[1] 冯志鹏,朱萍玉,褚福磊.基于自适应多尺度线性调频小波分解的水轮机非平稳振动信号分析[J].中国电机工程学报,2008,28(8):105-110. FENG Zhi-peng,ZHU Ping-yu,CHU Fu-lei.Time-frequency analysis of hydroturbine nonstationary vibration signal based on adaptive multi-scale chirplet decomposition[J].Proceedings of the Chinese Society for Electrical Engineering,2008,28(8):105-110.(in Chinese)
[2] 李允公,姚兆,刘杰,等.基于瞬时频率的窗宽递增寻优的短时傅里叶变换[J].东北大学学报:自然科学版,2007,28(12):1737-1740. LI Yun-gong,YAO Zhao,LIU Jie,et al.Anovel STFT of window duration increasing optimization based on instantaneous frequency[J].Journal of Northeastern University(Natural Science),2007,28(12):1737-1740.(in Chinese)
[3] 刘文艺,汤宝平,陈仁祥,等.一种应用自项抑制魏格纳分布交叉项的方法[J].中国机械工程,2009,20(21):2613-2616. LIU Wen-yi,TANG Bao-ping,CHEN Ren-xiang,et al.A method to suppress the cross terms in Wigner-Ville distribution using auto terms[J].China Mechanical Engineering,2009,20(21):2613-2616.(in Chinese)
[4] 徐小军,王友仁.基于离散分数阶正交小波变换图像降噪新方法[J].电子学报,2014,42(2):280-287. XU Xiao-jun,WANG You-ren.Novel image denoising method based on discrete fractional orthogonal wavelet transform[J].Acta Electronica Sinica,2014,42(2):280-287.(in Chinese)
[5] 王登,苗夺谦,王睿智.一种新的基于小波包分解的EEG特征抽取与识别方法研究[J].电子学报,2013,41(1):193-198. WANG Deng,MIAO Duo-qian,WANG Rui-zhi.A new method of EEG classification with feature extraction based on wavelet packet decomposition[J].Acta Electronica Sinica,2013,41(1):193-198.(in Chinese)
[6] 程军圣.基于Hilbert-Huang变换的旋转机械故障诊断方法研究[D].长沙:湖南大学,2005.
[7] HUANGN E,WU M L C,LONG S R,et al.A confidence limit for the empirical mode decomposition and Hilbert spectral analysis[J].Proceedings of the Royal Society of London,A,2003,459(2037):2317-2345.
[8] HUANGN E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London,A,1998,454(1971):903-995.
[9] HUANGN E,SHEN Z,LONG S R.A new view of nonlinear water waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999,31(1):417-457.
[10] 葛光涛,虞露.二维经验模态可分离度及其量化计算[J].电子学报,2013,41(7):1313-1318. GE Guang-tao,YU Lu.The bidimensional empirical mode detachable degree and its quantum calculation[J].Acta Electronica Sinica,2013,41(7):1313-1318.(in Chinese)
[11] KALEEM M,GHORAANI B,GUERGACHI A,et al.Pathological speech signal analysis and classification using empirical mode decomposition[J].Med Biol Eng Comput,2013,51(7):811-821.
[12] LEI Y G,LIN J,HE Z J,et al.A review on empirical mode decomposition in fault diagnosis of rotating machinery[J].Mechanical Systems and Signal Processing,2013,35(1-2):108-126.
[13] CHEN G D,WANG Z C.A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components[J].Mechanical Systems and Signal Processing,2012,28(2):258-279.
[14] WANG Z C,CHEN G D.Analytical mode decomposition of time series with decaying amplitudes and overlapping instantaneous frequencies[J].Smart Materials and Structures,2013,22(9):95003-95016.
[15] OLHEDE S,WALDEN A T.A generalized demodulation approach to time-frequency projections for multicomponent signals[J].Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences,2005,461(2005):2159-2179.
[16] CHENG J S,YANG Y,YU D J.The envelope order spectrum based on generalized demodulation time-frequency analysis and its application to gear fault diagnosis[J].Mechanical Systems and Signal Processing,2010,24(2):508-521. |