面向中文微博的评价对象与评价词语联合抽取

刘全超, 黄河燕, 冯冲

电子学报 ›› 2016, Vol. 44 ›› Issue (7) : 1662-1670.

PDF(1692 KB)
PDF(1692 KB)
电子学报 ›› 2016, Vol. 44 ›› Issue (7) : 1662-1670. DOI: 10.3969/j.issn.0372-2112.2016.07.021
学术论文

面向中文微博的评价对象与评价词语联合抽取

  • 刘全超, 黄河燕, 冯冲
作者信息 +

Co-Extracting Opinion Targets and Opinion-Bearing Words in Chinese Micro-Blog Texts

  • LIU Quan-chao, HUANG He-yan, FENG Chong
Author information +
文章历史 +

摘要

深入挖掘微博内容中评价对象与评价词语的词法特征、句法特征、语义特征以及相对位置特征,提出评价对象与评价词语的序列化联合抽取模型.进一步结合微博间转发关系特性提出基于转发关系的联合抽取优化算法.并与相关算法进行实验对比,对实验结果进行了综合分析,证明了方法的可行性和优越性.

Abstract

Using lexical,syntactic,semantic and relative position features to extract opinion pairs in micro-blog,we put forward the co-extracting model,and then give co-extracting opinion pairs optimization algorithm based on forwarding between micro-blogs.According to the experimental results,our two-stage approach greatly improves the performances of co-extracting opinion pairs.

关键词

观点挖掘 / 信息抽取 / 社交网络 / 评价对象 / 评价词语 / 微博

Key words

opinion mining / information extraction / social network / opinion target / opinion-bearing word / micro-blog

引用本文

导出引用
刘全超, 黄河燕, 冯冲. 面向中文微博的评价对象与评价词语联合抽取[J]. 电子学报, 2016, 44(7): 1662-1670. https://doi.org/10.3969/j.issn.0372-2112.2016.07.021
LIU Quan-chao, HUANG He-yan, FENG Chong. Co-Extracting Opinion Targets and Opinion-Bearing Words in Chinese Micro-Blog Texts[J]. Acta Electronica Sinica, 2016, 44(7): 1662-1670. https://doi.org/10.3969/j.issn.0372-2112.2016.07.021
中图分类号: TP391   

参考文献

[1] Hu M,Liu B.Mining opinion features in customer reviews[A].Proceedings of the N ineteenth National Conference on Artificial Intelligence[C].AAAI,2004.4(4):755-760.
[2] Popescu A M,Nguyen B,Etzioni O.OPINE:Extracting product features and opinions fr om reviews[A].Proceedings of HLT/EMNLP on Interactive Demonstrations[C].ACL, 2005.32-33.
[3] Zhang L,Liu B,Lim S H,et al.Extracting and ranking product features in opinion documents[A].Proceedings of the 23rd International Conference on Computational Linguistics:Posters[C].ACL,2010.1462-1470.
[4] Liu K,Xu L,Zhao J.Opinion target extraction using word-based translation model[A].Proceedings of the 2012 Joint Conference on Empirical Methods in Natural L anguage Processing and Computational Natural Language Learning[C].ACL,2012.1346-1356.
[5] Xu L,Liu K,Lai S,et al.Mining opinion words and opinion targets in atwo-stage framework[A].Proceedings of the 51st Annual Meeting of the Association for Com putational Linguistics[C].ACL,2013.1764-1773.
[6] Xu L,Liu K,Lai S,et al.Walk and learn:atwo-stage approach for opinion words an dopinion targets co-extraction[A].Proceedings of the 22nd International Conference on World Wide Web Companion[C].International World Wide Web Conferences Steering Committee,2013.95-96.
[7] Liu K,Xu L,Zhao J.Extracting opinion targets and opinion words from online reviews with graph co-ranking[A].Proceedings of the 52nd Annual Meeting of the Ass ociation for Computational Linguistics[C].ACL,2014.314-324.
[8] Liu K,Xu L,Zhao J.Co-extracting opinion targets and opinion words from online reviews based on the word alignment model[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(3):636-650.
[9] Wilson T,Wiebe J,Hoffmann P.Recognizing contextual polarity in phrase-level sen timent analysis[A].Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing[C].Vancouver,British Colu mbia,Canada:ACL,2005.347-354.
[10] Wilson T,Wiebe J,Hoffmann P.Recognizing contextual polarity:An exploration of fe atures for phrase-level sentiment analysis[J].Computational Linguistics,2009.35(3):399-433.
[11] Jin W,Ho H H,Srihari R K.Opinion miner:a novel machine learning system for web opinion mining and extraction[A].Proceedings of KDD'2009[C].KDD,2009.1195-1204.
[12] Zhao Y,Qin B,Liu T.Collocation polarity disambiguation using web-based pseudo contexts[A].Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning[C].ACL,2012.160-170.
[13] 吕品,钟珞,唐琨皓.在线产品评论用户满意度综合评价研究[J].电子学报,2014,42(4):740-746. Lv P,Zhong L,Tang K H.Customer satisfaction degree evaluation of online product review[J].Acta Electronica Sinica,2014,42(4):740-746.(in Chinese)
[14] 庄丽.评论性信息挖掘研究[D].北京:清华大学,2007. Zhuang L.Studies on review mining[D].Beijing:Tsinghua University,2007.
[15] 施寒潇.细粒度情感分析研究[D].苏州:苏州大学,2013. Shi H X.Research on fine-graind sentiment analyis[D].Suzhou:Soochow University,2013.
[16] Lafferty JD,McCallum A,Pereira FCN.Conditional random fields:probabilistic models for segmenting and labeling sequence data[A].Proceedings of ICML'2001[C]. ICML,2001.282-289.
[17] 黄昌宁,赵海.中文分词十年回顾[J].中文信息学报,2007,21(3):8-19.
[18] 刘挺,车万翔,李正华.语言技术平台[J].中文信息学报,2012,25(6):53-62.
[19] Yi J,Nasukawa T,Bunescu R,Niblack W.Sentiment analyzer:Extracting sentiments about agiven topic using natural language processing techniques[A].Third IEEE In ternational Conference on Data Mining (ICDM 2003)[C].IEEE,2003.427-434.
[20] Hu M,Liu B.Mining and summarizing customer reviews[A].Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].ACM,2004.168-177.
[21] Jakob N,Gurevych I.Extracting opinion targets in a single-and cross-domain set ting with conditional random fields[A].Proceedings of the 2010 Conference on E mpirical Methods in Natural Language Processing.Association for Computational Linguistics[C].ACL,2010.1035-1045.
[22] 刘全超,黄河燕,冯冲.基于多特征微博话题情感倾向性判定算法研究[J].中文信息学报,2014,28(4):123-131.
[23] Popescu A M,Etzioni O.Extracting product features and opinions from reviews[A].Natural Language Processing and Text Mining[M].London:Springer,2007.9-28.
[24] 姚天昉,聂青阳,李建超,等.一个用于汉语汽车评论的意见挖掘系统[A].中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集[C].北京:清华大学出版社,2006.260-281.

基金

国家973重点基础研究发展计划 (No.2013CB329605)

PDF(1692 KB)

1873

Accesses

0

Citation

Detail

段落导航
相关文章

/