电子学报 ›› 2016, Vol. 44 ›› Issue (9): 2040-2045.DOI: 10.3969/j.issn.0372-2112.2016.09.002

• 学术论文 • 上一篇    下一篇

一种基于图的DL-Lite本体最小不可满足保持子集的计算方法

付雪峰1, 漆桂林2, 张勇2   

  1. 1. 南昌工程学院信息工程学院, 江西南昌 330099;
    2. 东南大学计算机科学与工程学院, 江苏南京 210096
  • 收稿日期:2015-06-24 修回日期:2015-12-03 出版日期:2016-09-25 发布日期:2016-09-25
  • 作者简介:付雪峰 男,江西高安人,1978年出生.南昌工程学院信息工程学院讲师,主要研究方向:本体调试与修正,不一致性处理.E-mail:fxf@seu.edu.cn;漆桂林 男,江西宜丰人,1977年出生.东南大学计算科学与工程学院教授,博士生导师,主要研究方向:知识表达,语义网,不一致推理等.E-mail:gqi@seu.edu.cn;张勇 男,山东蓬莱人,1989年出生.东南大学计算机科学与工程学院硕士研究生,主要研究方向:本体映射与调试.E-mail:zhangyong@seu.edu.cn
  • 基金资助:

    国家“八六三”高技术研究发展计划基金项目(No.2015AA015406);国家自然科学基金(No.61272378);江西省教育厅青年科学基金项目(No.GJJ12643)

A Graph-Based Approach for Calculating Minimal Unsatisfiability-Preserving Subsets of Ontology in DL-Lite

FU Xue-feng1, QI Gui-lin2, ZHANG Yong2   

  1. 1. School of Information Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China;
    2. School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
  • Received:2015-06-24 Revised:2015-12-03 Online:2016-09-25 Published:2016-09-25

摘要:

演变中的本体常出现不一致性问题,这将导致标准推理失效.针对不一致性问题,最小不可满足保持子集能够提供本体中概念不可满足的解释.计算最小不可满足保持子集是本体工程中的一项重要的非标准推理任务,但多数计算方法须借助外部的推理机,导致计算的效率不高.为了减少对推理机的依赖,本文提出了一种基于图的最小不可满足保持子集的计算方法.新的方法面向DL-Lite描述逻辑家族,将DL-Lite本体转换成图,将本体中的最小不可满足保持子集转换成图上的最小不可满足保持路径对.对比实验表明,基于图的方法提高了计算的效率和稳定性.

关键词: 本体, 描述逻辑, 不一致处理, 最小不可满足保持子集

Abstract:

Inconsistency often occurs during ontology evolution,and leads to the invalidity of standard reasoning.Minimal unsatisfiablility-preserving sub-TBox (MUPS) can provide an explanation of the unsatisfiability of a concept in an ontology.Finding all MUPS is an important nonstandard reasoning task in ontology engineering.Most of the approaches for calculating MUPS are built on external description logic reasoners.However,a reasoner-based method can hardly achieve positive efficiency and stability.In this paper,we propose a reasoner-independent approach to calculating MUPS using graph representation.We first transform DL ontologies to graphs,and find MUPS by computing the minimal unsatisfiability-preserving path-pair (MUPP) based on the transformed graphs.We implement and evaluate our approach.The experimental results demonstrate that our approach performs well in efficiency and stability.

Key words: ontology, description logic, inconsistency handling, minimal unsatisfiablility-preserving sub-TBox

中图分类号: