[1] Calders T,Dexters N,Goethals B.Mining frequent itemsets in a stream[A].Seventh IEEE International Conference on Data Mining[C].Omaha,Nebraska:IEEE,2007.83-92.
[2] Yuan Z,Jia Y,Yang S.Online burst detection over high speed short text streams[A].Computational Science-ICCS 2007[C].Heidelberg,Berlin:Springer,2007.717-725.
[3] Fujiki T,Nanno T,Suzuki Y,Okumura M.Identification of bursts in a document stream[A].First International Workshop on Knowledge Discovery in Data Streams (in conjunction with ECML/PKDD 2004)[C].Pisa,Italy,2004.55-64.
[4] Kleinberg J.Bursty and hierarchical structure in streams[J].Data Mining and Knowledge Discovery,2003,7(4):373-397.
[5] Ahonen-Myka H.Discovery of frequent word sequences in text[A].Pattern Detection and Discovery[M].Berlin Heidelberg:Springer,2002.180-189.
[6] Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[A].ACM SIGMOD Record[C].Dallas,Texas:ACM,2000.29(2):1-12.
[7] Wong R C W,Fu A W C.Mining top-K frequent itemsets from data streams[J].Data Mining and Knowledge Discovery,2006,13(2):193-217.
[8] Lee D,Lee W.Finding maximal frequent itemsets over online data streams adaptively[A].Fifth IEEE International Conference on Data Mining[C].Houston,Texas:IEEE,2005.8.
[9] Yu J X,Chong Z,Lu H,et al.False positive or false negative:mining frequent itemsets from high speed transactional data streams[A].Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB Endowment)[C].Toronto,2004.Volume 30:204-215.
[10] Thanh Lam H,Calders T.Mining top-k frequent items in a data stream with flexible sliding windows[A].Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Washington,DC:ACM,2010.283-292.
[11] Zhou G,Zou H C,Xiong X B,et al.MB-singlepass:microblog topic detection based on combined similarity[J].Computer Science,2012,39(10):198-202.
[12] Liu G,Xu X,Zhu Y,et al.An improved latent dirichlet allocation model for hot topic extraction[A].IEEE Fourth International Conference on Big Data and Cloud Computing (BdCloud)[C].Sydney:IEEE,2014.470-476. |