[1] Hammons A R Jr,Kumar P V,Calderbank A R,Sloane N J A,Solé P. The Z4-linearity of Kerdock,Preparata,Goethals and related codes[J]. IEEE Transactions on Information Theory,1994,40(2): 301-319.
[2] 吴波,朱士信,李平. 环Fp+uFp上的Kerdock码与Preparata码[J]. 电子学报,2008,36(7): 1364-1367. Wo Bo,Zhu Shi-xin,Li Ping. Kerdock codes and Preparata codes over rings Fp+uFp[J]. Acta Electronica Sinica,2008,36(7): 1364-1367. (in Chinese)
[3] 朱士信,许和乾,施敏加. 环Z4上线性码关于RT距离MacWalliams恒等式[J]. 电子学报,2009,37(5): 1115-1118. Zhu Shi-xin,Xu He-qian,Shi Min-jia. MacWalliams identities of linear codes over ring Z4 with respect to the RT metric[J]. Acta Electronica Sinica,2009,37(5): 1115-1118. (in Chinese)
[4] 施敏加,杨善林. 非主理想环Fp+vFp上线性码的MacWalliams恒等式[J]. 电子学报,2011,39(10): 2449-2453. Shi Min-jia,Yang Shan-lin. MacWilliams identities of linear codes over non-principal ideal ring Fp+vFp[J]. Acta Electronica Sinica,2011,39(10): 2449-2453. (in Chinese)
[5] Bachoc C. Applications of coding theory to the construction of modular lattices[J]. Journal of Combinatorial Theory Series A,1997,78(1): 92-119.
[6] Bonnecaze A,Solé P,Bachoc C,Mourrain B. Type Ⅱ codes over Z4[J]. IEEE Transactions on Information Theory,1997,43(3): 969-976.
[7] Dougherty S T,Gaborit P,Harada M,Solé P. Type Ⅱ codes over F2+uF2[J]. IEEE Transactions on Information Theory,1999,45(1): 32-45.
[8] Yildiz B,Karadeniz S. Self-dual codes over F2+uF2+vF2+uvF2[J]. Journal of the Franklin Institute,2010,347(10):1888-1894.
[9] Yildiz B,Karadeniz S. Linear codes over Z4+uZ4: MacWilliams identities,projections,and formally self-dual codes[J]. Finite Fields and Their Applications,2014,27: 24-40.
[10] Wood J. Duality for modules over finite rings and applications to coding theory[J].The American Journal of Mathematics,1999,121(3): 555-575.
[11] Doughterty S T,Kim J L,Kulosman H,Liu H W. Self-dual codes over commutative Frobenius rings[J]. Finite Fields and Their Applications,2010,16(1): 14-26. |