[1] Bäck T,Foussette C,Krause P.Contemporary Evolution Strategies[M].Berlin Heidelberg:Springer,2015.7-86.
[2] Das S,Suganthan P N.Differential evolution:a survey of the state-of-the-art[J].IEEE Transactions on Evolutionary Computation,2011,15(1):4-31.
[3] 彭虎,吴志健,等.基于精英区域学习的动态差分进化算法[J].电子学报,2014,42(8):1522-1530. Peng Hu,Wu Zhi-jian,et al.Dynamic differential evolution algorithm based on elite local learning[J].Acta Electronica Sinica,2014,42(8):1522-1530.(in Chinese)
[4] 周新宇,吴志健,等.一种精英反向学习的粒子群优化算法[J].电子学报,2013,41(8):1647-1652. Zhou Xin-yu,Wu Zhi-jian,et al.Elite opposition-based particle swarm optimization[J].Acta Electronica Sinica,2013,41(8):1647-1652.(in Chinese)
[5] 喻飞,李元香,等.透镜成像反学习策略在粒子群算法中的应用[J].电子学报,2014,42(2):230-235. Yu Fei,Li Yuan-xiang,et al.The application of a novel OBL based on lens imaging principle in PSO[J].Acta Electronica Sinica,2014,42(2):230-235.(in Chinese)
[6] Schwefel H.Numerical Optimization of Computer Models[M].New York:John Wiley & Sons Inc,1981.1-389.
[7] Ostermeier A,Gawelczyk A,Hansen N.A derandomized approach to self-adaptation of evolution strategies[J].Evolutionary Computation,1994,2(4):369-380.
[8] Hansen N,Ostermeier A.Adapting arbitrary normal mutation distributions in evolution strategies:the covariance matrix adaptation[A].Proc of IEEE Conference on Evolutionary Computation[C].IEEE,1996.312-317.
[9] Hansen N,Ostermeier A.Completely derandomized self-adaptation in evolution strategies[J].Evolutionary Computation,2001,9(2):159-195.
[10] Hansen N,Muller S D,Koumoutsakos P.Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)[J].Evolutionary Computation,2003,11(1):1-18.
[11] Müller S D,Hansen N,et al.Increasing the serial and the parallel performance of the CMA-evolution strategy with large populations[A].Parallel Problem Solving from Nature-PPSN VII[C].Granada:Springer,2002.422-431.
[12] Igel C,Suttorp T,Hansen N.A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies[A].Proc of the 8th Annual Conference on Genetic and Evolutionary Computation[C].Washington:ACM,2006.453-460.
[13] Grewal M,Andrews A.Kalman Filtering:Theory and Practice Using MATLAB[M].New York:John Wiley & Sons Inc,2001.25-347.
[14] Igel C,Hansen N,Roth S.Covariance matrix adaptation for multi-objective optimization[J].Evolutionary Computation,2007,15(1):1-28.
[15] Suttorp T,Hansen N,Igel C.Efficient covariance matrix update for variable metric evolution strategies[J].Machine Learning,2009,75(2):167-197.
[16] Ros R,Hansen N.A simple modification in CMA-ES achieving linear time and space complexity[A].Parallel Problem Solving from Nature-PPSN X[C].Berlin Heidelberg:Springer,2008.296-305.
[17] Chen L,Zheng Z,et al.An evolutionary algorithm based on covariance matrix learning and searching preference for solving CEC 2014 benchmark problems[A].Proc of IEEE Congress on Evolutionary Computation[C].Beijing:IEEE,2014.2672-2677.
[18] Ghosh S,Das S,Roy S,et al.A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization[J].Information Sciences,2012,182(1):199-219.
[19] Preuss M.Niching the CMA-ES via nearest-better clustering[A].Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation[C].Portland:ACM,2010.1711-1718.
[20] Li L X,Tang K.History-based topological speciation for multimodal optimization[J].IEEE Transactions on Evolutionary Computation,2015,19(1):136-150.
[21] 杨咚咚,焦李成,等.求解偏好多目标优化的克隆选择算法[J].软件学报,2010,21(01):14-33. Yang Dong-dong,Jiao Li-cheng,et al.Clone selection algorithm to solve preference multi-objective optimization[J].Journal of Software,2010,21(01):14-33.(in Chinese)
[22] Loshchilov I.A computationally efficient limited memory CMA-ES for large scale optimization[A].Proc of the 2014 Conference on Genetic and Evolutionary Computation[C].Vancouver:ACM,2014.397-404.
[23] Yang Z,Tang K,Yao X.Large scale evolutionary optimization using cooperative coevolution[J].Information Sciences,2008,178(15):2985-2999.
[24] Hansen N.The CMA Evolution Strategy:A Tutorial[Z].2011.1-34
[25] Suganthan P N,Hansen N,et al.Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization[R].Singapore:Nanyang Technological University,2005.1-50.
[26] Li X,Tang K,et al.Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization[R].Cancun:IEEE,2013.1-23.
[27] Arnold D V.Noisy Optimization with Evolution Strategies[Z].Boston:Kluwer Academic Publishers,2002.1-20.
[28] Chen T,Tang K,Chen G,et al.Analysis of computational time of simple estimation of distribution algorithms[J].IEEE Transactions on Evolutionary Computation,2010,14(1):1-22.
[29] Yang P,Tang K,Lu X.Improving estimation of distribution algorithm on multimodal problems by detecting promising areas[J].IEEE Transactions on Cybernetics,2015,45(8):1438-1449.
[30] Beyer H,Deb K.On self-adaptive features in real-parameter evolutionary algorithms[J].IEEE Transactions on Evolutionary Computation,2001,5(3):250-270. |