一种基于能量的压缩感知稀疏度估计算法

裴立业, 江桦, 李明

电子学报 ›› 2017, Vol. 45 ›› Issue (2) : 285-290.

PDF(748 KB)
PDF(748 KB)
电子学报 ›› 2017, Vol. 45 ›› Issue (2) : 285-290. DOI: 10.3969/j.issn.0372-2112.2017.02.004
学术论文

一种基于能量的压缩感知稀疏度估计算法

  • 裴立业, 江桦, 李明
作者信息 +

A Sparsity Order Estimation Algorithm Based on Measured Signal's Energy

  • PEI Li-ye, JIANG Hua, LI Ming
Author information +
文章历史 +

摘要

压缩感知理论中,信号稀疏度直接关系到采样速率的设定以及观测矩阵的构造,而该先验信息往往受限.针对这一问题,本文从大维随机矩阵谱分析理论出发,分析了采样协方差矩阵的极限特征值概率分布特征,并结合其与观测信号能量的关系推导得到观测信号能量与压缩率、稀疏度和信噪比之间的对应关系,提出一种基于观测信号能量的稀疏度估计算法.相对于已有算法,该算法计算复杂度较低,且估计精度较好,并可通过增加采样开销进一步提升稀疏度估计精度,仿真实验验证了本文算法的有效性.

Abstract

Signal sparsity is directly related to the determination of sampling rate and the construction of measurement matrix in compressive sensing.However,the sparsity order is often unknown or time-varying.In this context,investigating blind sparsity order estimation (SOE) techniques is an open research issue.To address this,asymptotic random matrix spectrum analysis theory was used to derive the asymptotic eigenvalue probability distribution function (AEPDF) of the measured signal's covariance matrix.Then,the paper used the relation between the measurement energy and AEPDF to further deduce the corresponding relation between the sparsity order,compressive rate,SNR and the measured signal energy.Subsequently,based on this relation,a technique to estimate the sparsity order using the measured signal energy was proposed.Simulation results show that the proposed algorithm can gain higher estimation performance with lower computational complexity compared with the existing algorithm.And the estimation accuracy can be enhanced by increasing the sampling overhead.

关键词

压缩感知 / 稀疏度估计 / 随机矩阵理论 / Stieltjes变换

Key words

compressive sensing / sparsity order estimation / random matrix theory / stieltjes transform

引用本文

导出引用
裴立业, 江桦, 李明. 一种基于能量的压缩感知稀疏度估计算法[J]. 电子学报, 2017, 45(2): 285-290. https://doi.org/10.3969/j.issn.0372-2112.2017.02.004
PEI Li-ye, JIANG Hua, LI Ming. A Sparsity Order Estimation Algorithm Based on Measured Signal's Energy[J]. Acta Electronica Sinica, 2017, 45(2): 285-290. https://doi.org/10.3969/j.issn.0372-2112.2017.02.004
中图分类号: TN911   

参考文献

[1] Sun H,Nallanathan A,Wang C X.Wideband spectrum sensing for cognitive radio networks:a survey[J].IEEE Wireless Communications,2013,20(2):74-81.
[2] Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[3] Elzanati A M,Abdelkader M F,Seddik K G.Adaptive spectrum hole detection using sequential compressive sensing[A].2014 International Wireless Communications and Mobile Computing Conference[C].Nicosia:IEEE,2014.1081-1086.
[4] 王强,李佳,沈毅.压缩感知中确定性测量矩阵构造算法综述[J].电子学报,2013,41(10):2041-2050. Wang Qiang,Li Jia,Shen Yi.A survey on deterministic measurement matrix construction algorithms in compressive sensing[J].Acta Electronica Sinica,2013,41(10):2041-2050.(in Chinese)
[5] 王韦刚,杨震,顾彬.基于观测矩阵优化的自适应压缩频谱感知[J].通信学报,2014,35(8):33-39. Wang Wei-gang,Yang Zhen,Gu Bin.Adaptive compressed spectrum sensing based on optimized measurement matrix[J].Journal on Communications,2014,35(8):33-39.(in Chinese)
[6] 田文飚,康健,张洋,芮国胜,张海波.基于卡尔曼滤波的压缩感知弱匹配去噪重构[J].电子学报,2014,42(6):1061-1067. Tian Wen-biao,Kang Jian,Zhang Yang,Rui Guo-sheng,Zhang Hai-bo.Weakly matching pursuit denoising recovery for compressed sensing based on kalman filtering[J].Acta Electronica Sinica,2014,42(6):1061-1067.(in Chinese)
[7] Jin S,Zhang X.Collaborative compressive spectrum sensing with missing observations for cognitive radio networks[A].2014 IEEE Global Communications Conference[C].Austin:IEEE,2014.828-833.
[8] Malioutov D M,Sanghavi S R,Willsky A S.Compressed sensing with sequential observation[A].2008 IEEE International Conference on Acoustics,Speech and Signal Processing[C].Las Vegas:IEEE,2008.3357-3360.
[9] Wang Y,Tian Z,Feng C Y.Sparsity order estimation and its application in compressive spectrum sensing for cognitive radios[J].IEEE Transactions on Wireless Communications,2012,11(6):2116-2125.
[10] Sharma S K,Chatzinotas S,Ottersten B.Compressive sparsity order estimation for wideband cognitive radio receiver[J].IEEE Transactions on Signal Processing,2014,62(19):4984-4996.
[11] Jin Y,Rao B D.Support recovery of sparse signals in the presence of multiple measurement vectors[J].IEEE Transactions on Information Theory,2013,59(5):3139-3157.
[12] Tulino A M,Verdu S.Random matrix theory and wireless communications[J].Foundations and Trends in Communications and Information Theory,2004,1(1):1-182.
[13] Zeng Y,Liang Y C.Eigenvalue based spectrum sensing algorithms for cognitive radio[J].IEEE Transactions on Communications,2009,57(6):1784-1793.
[14] Voiculescu D.Multiplication of certain non-commuting random variables[J].Journal of Operator Theory,1987,18(2):223-235.
[15] Voiculescu D.Addition of certain non-commuting random variables[J].Journal of Functional Analysis,1986,66(3):323-346.
[16] Stathakis E,Jalden J,Rasmussen L K.Uniformly improving maximum likelihood SNR estimation of known signals in gaussian channels[J].IEEE Transactions on Signal Processing,2014,62(1):156-167.
[17] Sharma S K,Chatzinotas S,Ottersten B.Eigenvalue based sensing and SNR estimation for cognitive radio in presence of noise correlation[J].IEEE Transactions on Vehicular Technology,2013,62(8):3671-3684.

基金

国家自然科学基金 (No.61072046)

PDF(748 KB)

2459

Accesses

0

Citation

Detail

段落导航
相关文章

/