[1] 张永明,邓盛川,齐维贵.局域支持向量回归与误差区间估计的概率预报方法及其应用研究[J].电子学报,2010,38(01):190-194. Zhang Yong-ming,Deng Sheng-chuan,Qi Wei-gui.Probabilistic prediction approach based on local support vector regression and interval estimation of its error[J].Acta Electronica Sinica,2010,38(01):190-194.(in Chinese)
[2] 孙孝峰,吕庆秋.低压微电网逆变器频率电压协调控制[J].电工技术学报,2012,27(8):77-84. Sun Xiao-feng,Lv Qin-qiu.Improved PV control of grid-connected inverter in low voltage micro-grid[J].Transactions of China Electrotechnical Society,2012,27(8):77-84.(in Chinese)
[3] 鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. Lu Zong-xiang,Wang Cai-xia,Min Yong,et al.Overview on microgrid research[J].Automation of Electric Power Systems,2007,31(19):100-107.(in Chinese)
[4] 茆美琴,周松林,苏建徽.基于风光联合概率分布的微电网概率潮流预测[J].电工技术学报,2014,19(02):55-63. Mao Mei-qin,Zhou Song-lin,Su Jianhui.Probabilistic power flow forecasting of microgrid based on joint probability distribution about wind and irradiance[J].Transactions of China Electrotechnical Society,2014,19(02):55-63.(in Chinese)
[5] 陈益哲,张步涵,王江虹,等.基于短期负荷预测的微网储能系统主动控制策略[J].电网技术,2011,35(08):35-40. Chen Yi-zhe,Zhang Bu-han,Wang Jiang-hong,et al.Active control strategy for microgrid energy storage system based on short-term load forecasting[J].Power System Technology,2011,35(08):35-40.(in Chinese)
[6] 周念成,邓浩,王强钢,等.光伏与微型燃气轮机混合微网能量管理研究[J].电工技术学报,2012,27(01):74-84. Zhou Nian-cheng,Deng Hao,Wang Qianggang,et al.Energy management strategy of PV and micro-turbine hybrid micro-grid[J].Transactions of China Electrotechnical Society,2012,27(01):74-84.(in Chinese)
[7] 刘小平,丁明,张颖媛,等.微网系统的动态经济调度[J].中国电机工程学报,2011,31(31):77-84. Liu Xiao-ping,Ding Ming,Zhang Ying-yuan,et al.Dynamic economic dispatch for microgrids[J].Proceedings of the CSEE,2011,31(31):77-84.(in Chinese)
[8] Amjady N,Keynia F,Zareipour H.Short-term load forecast of microgrids by a new bilevel prediction strategy[J].IEEE Transactions on Smart Grid,2010,1(3):286-294.
[9] 刘念,张清鑫,刘海涛.基于核函数极限学习机的微电网短期负荷预测方法[J].电工技术学报,2015,30(08):218-224. Liu Nian,Zhang Qing-xin,Liu Haitao.Online short-term load forecasting based on ELM with kernel algorithm in micro-grid environment[J].Transactions of China Electrotechnical Society,2015,30(08):218-224.(in Chinese)
[10] 汤庆峰,刘念,张建华,等.基于EMD-KELM-EKF与参数优选的用户侧微电网短期负荷预测方法[J].电网技术,2014,38(10):2691-2699. Tang Qing-feng,Liu Nian,Zhang Jian-hua,et al.A short-term load forecasting method for micro-grid based on EMD-KELM-EKF and parameter optimization[J].Power System Technology,2014,38(10):2691-2699.(in Chinese)
[11] 陈民铀,朱博,徐瑞林,等.基于混合智能技术的微电网剩余负荷超短期预测[J].电力自动化设备,2012,32(05):13-18.
[12] 万昆,柳瑞禹.区间时间序列向量自回归模型在短期电力负荷预测中的应用[J].电网技术,2012,36(11):77-81. Wan Kun,Liu Rui-yu.Application of interval time-series vector autoregressive model in short-term load forecasting[J].Power System Technology,2012,36(11):77-81.(in Chinese)
[13] 康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11.
[14] 张弘,朱永佳,范磊磊,等.基于马尔科夫修正的中长期电力负荷组合区间预测[J].华东电力,2013,41(01):33-36. Zhang Hong,Zhu Yong-jia,Fan Lei-lei,et al.Mid-long term load interval forecasting based on Markov modification[J].East China Electric Power,2013,41(01):33-36.(in Chinese)
[15] 方仍存,周建中.应用聚类算法和混沌理论的短期负荷概率性区间预测[J].电网技术,2010,36(11):65-69. Fang Reng-cun,Zhou Jian-zhong.Probabilistic interval forecasting of short-term load on the basis of clustering algorithm and chaos theory[J].Power System Technology,2010,36(11):65-69.(in Chinese)
[16] Khosravi A,Nahavandi S,Creighton D,et al.Comprehensive review of neural network-based prediction intervals and new advances[J].IEEE Transactions on Neural Networks,2011,22(9):1341-1356.
[17] Khosravi A,Nahavandi S,Creighton D,et al.Lower upper bound estimation method for construction of neural network-based prediction intervals[J].IEEE Transactions on Neural Networks,2011,22(3):337-346.
[18] Quan H,Srinivasan D,Khosravi A.Short-term load and wind power forecasting using neural network-based prediction intervals[J].IEEE Transactions on Neural Networks and Learning Systems,2014,25(2):303-315.
[19] SI Yujing,LI Ta,PAN Jielin,YAN Yonghong.A prefix tree based n-best list re-scoring strategy for recurrent neural network language model[J].Chinese Journal of Electronics,2014,23(1):70-74.
[20] Chen P A,Chang L C,Chang F J.Reinforced recurrent neural networks for multi-step-ahead flood forecasts[J].Journal of Hydrology,2013,497:71-79.
[21] 陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,02:172-179. Chen Jie,Shen Yan-xia,Lu Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,02:172-179.(in Chinese)
[22] 周黎,周承恩,李海滨.寻求"理想"解的改进多目标粒子群优化算法[J].控制与决策,2015,30(09):1653-1659. Zhou Li,Zhou Cheng-en,Li Hai-bin.Improved multi-objective particle swarm optimization algorithm that can give"ideal"solution[J].Control and Decision,2015,30(09):1653-1659.(in Chinese)
[23] Chen J,Yang D.Constrained handling in multi-objective optimization based on quantum-behaved particle swarm optimization.[A].International Conference on Natural Computation ICNC 2010[C].Yantai,Shandong,China,2010.3887-3891.
[24] 高海兵,高亮,周驰,等.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(09):1572-1574. Gao Hai-bing,Gao Liang,Zhou Chi,et al.Particle swarm optimization based algorithm for neural network learning[J].Acta Electronica Sinica,2004,32(09):1572-1574.(in Chinese)
[25] Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[26] Akbari R,Hedayatzadeh R,Ziarati K,et al.A multi-objective artificial bee colony algorithm[J].Swarm & Evolutionary Computation,2012,2(1):39-52. |