[1] Lyu M R.Software reliability engineering:a roadmap[A].2007 Future of Software Engineering[C].Washington:IEEE Computer Society,2007.153-170.
[2] Caglayan B,Tosun Misirli A,Bener A B,et al.Predicting defective modules in different test phases[J].Software Quality Journal,2015,23(2):205-227.
[3] Shepperd M,Bowes D,Hall T.Researcher bias:the use of machine learning in software defect prediction[J].IEEE Transactions on Software Engineering,2014,40(6):603-616.
[4] Hall T,Beecham S,Bowes D,et al.A systematic literature review on fault prediction performance in software engineering[J].IEEE Transactions on Software Engineering,2012,38(6):1276-1304.
[5] Halstead M H.Elements of Software Science (Operating and Programming Systems Series)[M].New York:Elsevier Science Inc,1977.1-128.
[6] Mccabe T J.A complexity measure[J].IEEE Transactions on Software Engineering,1976,SE-2(SE-2):308-320.
[7] Menzies T,Greenwald J,Frank A.Data mining static code attributes to learn defect predictors[J].IEEE Transactions on Software Engineering,2007,33(1):2-13.
[8] Radjenovi? D,Heri? ko M,Torkar R,et al.Software fault prediction metrics:a systematic literature review[J].Information and Software Technology,2013,55(8):1397-1418.
[9] Basili V R,Briand L C,Melo W L.A validation of object-oriented design metrics as quality indicators[J].IEEE Transactions on Software Engineering,1996,22(10):751-761.
[10] Elish M O,Al-Yafei A H,Al-Mulhem M.Empirical comparison of three metrics suites for fault prediction in packages of object-oriented systems:a case study of eclipse[J].Advances in Engineering Software,2011,42(10):852-859.
[11] Olague H M,Etzkorn L H,Gholston S,et al.Empirical validation of three software metrics suites to predict fault-proneness of object-oriented classes developed using highly iterative or agile software development processes[J].IEEE Transactions on Software Engineering,2007,33(6):402-419.
[12] Bell R M,Ostrand T J,Weyuker E J.Does measuring code change improve fault prediction?[A].Proceedings of the 7th International Conference on Predictive Models in Software Engineering[C].New York:ACM,2011.1-8.
[13] Munson J C,Elbaum S G.Code churn:a measure for estimating the impact of code change[A].Proceedings of the International Conference on Software Maintenance[C].Washington:IEEE Computer Society,1998.24-31.
[14] Kpodjedo S,Ricca F,Galinier P,et al.Design evolution metrics for defect prediction in object oriented systems[J].Empirical Software Engineering,2011,16(1):141-175.
[15] Nagappan N,Zeller A,Zimmermann T,et al.Change bursts as defect predictors[A].Proceedings of the 21st IEEE International Symposium on Software Reliability Engineering[C].Washington:IEEE Computer Society,2010.309-318.
[16] Khoshgoftaar T M,Allen E B,Halstead R,et al.Using process history to predict software quality[J].Computer,1998,31(4):66-72.
[17] Illes-Seifert T,Paech B.Exploring the relationship of a file's history and its fault-proneness:an empirical method and its application to open source programs[J].Information and Software Technology,2010,52(5):539-558.
[18] Okutan A,Yildiz O T.Software defect prediction using Bayesian networks[J].Empirical Software Engineering,2014,19(1):154-181.
[19] Ostrand T J,Weyuker E J,Bell R M.Programmer-based fault prediction[A].Proceedings of the 6th International Conference on Predictive Models in Software Engineering[C].New York:ACM,2010.1-10.
[20] Malhotra R.A systematic review of machine learning techniques for software fault prediction[J].Applied Soft Computing,2015,27(0):504-518.
[21] Wang S,Yao X.Using class imbalance learning for software defect prediction[J].IEEE Transactions on Reliability,2013,62(2):434-443.
[22] Catal C,Sevim U,Diri B.Metrics-driven Software Quality Prediction Without Prior Fault Data[M].Berlin:Springer,2010.189-199.
[23] Catal C,Sevim U,Diri B.Clustering and metrics thresholds based software fault prediction of unlabeled program modules[A].Proceedings of the 2009 Sixth International Conference on Information Technology:New Generations[C].Washington:IEEE Computer Society,2009.199-204.
[24] Alan O,Catal C.Thresholds based outlier detection approach for mining class outliers:an empirical case study on software measurement datasets[J].Expert Systems with Applications,2011,38(4):3440-3445.
[25] Li M,Zhang H,Wu R,et al.Sample-based software defect prediction with active and semi-supervised learning[J].Automated Software Engineering,2012,19(2):201-230.
[26] Rahman F,Devanbu P.How,and why,process metrics are better[A].Proceedings of the 2013 International Conference on Software Engineering[C].USA:IEEE Press,2013.432-441.
[27] Kastro Y,Ay,Bener E B.A defect prediction method for software versioning[J].Software Quality Control,2008,16(4):543-562.
[28] Weyuker E,Ostrand T,Bell R.Do too many cooks spoil the broth? Using the number of developers to enhance defect prediction models[J].Empirical Software Engineering,2008,13(5):539-559.
[29] Misirli A T,Murphy B,Zimmermann T,et al.An explanatory analysis on eclipse beta-release bugs through in-process metrics[A].Proceedings of the 8th International Workshop on Software Quality[C].New York:ACM,2011.26-33.
[30] Turhan B.On the dataset shift problem in software engineering prediction models[J].Empirical Software Engineering,2012,17(1):62-74.
[31] Watanabe S,Kaiya H,Kaijiri K.Adapting a fault prediction model to allow inter language reuse[A].Proceedings of the 4th International Workshop on Predictor Models in Software Engineering[C].New York:ACM,2008.19-24.
[32] Nam J,Pan S J,Kim S.Transfer defect learning[A].Proceedings of the 2013 International Conference on Software Engineering[C].USA:IEEE Press,2013.382-391.
[33] He P,Li B,Liu X,et al.An empirical study on software defect prediction with a simplified metric set[J].Information and Software Technology,2015,59:170-190.
[34] Turhan B,Menzies T,Bener A B,et al.On the relative value of cross-company and within-company data for defect prediction[J].Empirical Software Engineering,2009,14(5):540-578.
[35] Herbold S.Training data selection for cross-project defect prediction[A].Proceedings of the 9th International Conference on Predictive Models in Software Engineering.Baltimore[C].New York:ACM,2013.1-10.
[36] Ma Y,Luo G,Zeng X,et al.Transfer learning for cross-company software defect prediction[J].Information and Software Technology,2012,54(3):248-256.
[37] Menzies T,Butcher A,Cok D,et al.Local versus global lessons for defect prediction and effort estimation[J].IEEE Transactions on Software Engineering,2013,39(6):822-834.
[38] Bettenburg N,Nagappan M,Hassan A E.Think locally,act globally:Improving defect and effort prediction models[A].Proceedings of the 9th IEEE Working Conference on Mining Software Repositories[C].USA:IEEE Press,2012.60-69.
[39] Peters F,Menzies T,Gong L,et al.Balancing privacy and utility in cross-company defect prediction[J].IEEE Transactions on Software Engineering,2013,39(8):1054-1068.
[40] Lewis C,Lin Z,Sadowski C,et al.Does bug prediction support human developers? findings from a google case study[A].Proceedings of the 2013 International Conference on Software Engineering[C].USA:IEEE Press,2013.372-381.
[41] Czerwonka J,Das R,Nagappan N,et al.CRANE:failure prediction,change analysis and test prioritization in practice-experiences from Windows[A].Proceedings of the 2011 Fourth IEEE International Conference on Software Testing,Verification and Validation[C].Washington:IEEE Computer Society,2011.357-366. |