[1] Davey M C,MacKay D.Low-density parity check codes over GF(q)[J].IEEE Communications Letters,1998,2(6):165-167.
[2] Declercq D,Fossorier M.Decoding algorithms for nonbinary LDPC codes over GF(q)[J].IEEE Transactions on Communications,2007,55(4):633-643.
[3] Li E,Declercq D,Gunnam K.Trellis-based extended min-sum algorithm for non-binary LDPC codes and its hardware structure[J].IEEE Transactions on Communications,2013,61(7):2600-2611.
[4] Lacruz J,Garcia-Herrero F,Valls J,Declercq D.One minimum only trellis decoder for non-binary low-density parity-check codes[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2015,62(1):177-184.
[5] Ma X,Zhang K,Chen H,Bai B.Low complexity X-EMS algorithms for nonbinary LDPC codes[J].IEEE Transactions on Communications,2012,60(1):9-13.
[6] Zhao S,Lu Z,Ma X,Bai B.A variant of the EMS decoding algorithm for nonbinary LDPC codes[J].IEEE Communications Letters,2013,17(8):1640-1643.
[7] Han G,Guan Y,Huang X.Check node reliability-based scheduling for BP decoding of non-binary LDPC codes[J].IEEE Transactions on Communications,2013,61(3):877-885.
[8] Sun Y,Chen H,Li X,Luo L,Qin T.Reliability-based iterative proportionality-logic decoding of LDPC codes with adaptive decision[J].Journal of Communications and Networks,2015,17(3):213-220.
[9] Forney Jr G D.Codes on graphs:normal realizations[J].IEEE Transactions on Information Theory,2001,47(2):520-548.
[10] Zeng L,Lan L,Tai Y,Song S,Lin S,Abdel-Ghaffard K.Constructions of nonbinary quasi-cyclic LDPC codes:A finite field approach[J].IEEE Transactions on Communications,2008,56(4):545-554.
[11] Hu X,Eleftheriou E,Arnold D.Regular and irregular progressive edge-growth tanner graphs[J].IEEE Transactions on Information Theory,2005,51(1):386-398. |