[1] A D Spaulding and G H Hagn.On the definition and estimation of spectrum occupancy[J].IEEE transactions on Electromagnetic Compatibility,1977,19(3):269-280.
[2] López-Benítez M and Casadevall F.Discrete-time spectrum occupancy model based on Markov chain and duty cycle models[A].IEEE International Symposium on Dynamic Spectrum Access Networks[C].Aachen,Germany,IEEE,2011.90-99.
[3] DALTA D,WYGLINSKI A M,MINDEN G J.A spectrum surveying framework for dynamic spectrum access networks[J].IEEE Transactions on Vehicular Technology,2009,58(8):4158-4168.
[4] HAMID Eltom,SITHAMPARANATHAN Kandeepan,BILL Moran and ROBIN J Evans.Spectrum occupancy prediction using a Hidden Markov Model[A].Signal Processing and Communication Systems[C].Cairns,QLD,IEEE,2015.1-8.
[5] S Bai,X ZHOU,F Xu.Soft decision spectrum prediction based on back-propagation neural networks[A].IEEE International Conference on Computing,Management and Telecommunications[C].DaNang,Vietnam:IEEE,2014.128-133.
[6] X Xing,T Jing,W Cheng,Y Huo,X Cheng.Spectrum prediction in cognitive radio networks[J].IEEE Wireless Communications,2013,20(4):90-96.
[7] BAI Suya,ZHOU Xin,XU Fanjiang.Spectrum prediction based on improved-back-propagation neural networks[A].International Conference on Natural Computation[C].Zhangjiajie,China:IEEE,2015.1066-1011.
[8] GORCIN A,CELEBI H,KHALID A Q,et al.An autoregressive approach for spectrum occupancy modeling and prediction based on synchronous measurements[A].IEEE 22th International Symposium on Personal,Indoor and Mobile Radio Commission[C].Toronto,Canada:IEEE,2011.705-709.
[9] 王磊,谢树果,苏东林,等.基于时间序列分析的频谱异常自主检测和稳健估计方法[J].电子学报,2014,42(6):1055-1060. WANG Lei,XIE Shuguo,SU Donglin,et al.An autonomous detection and robust estimation method of spectrum anomaly based on time series analysis[J].Acta Electronica Sinica,2014,42(6):1055-1060.(in Chinese)
[10] Yarkan S,Arslan H.Binary time series approach to spectrum prediction for cognitive radio[A].IEEE 66th Vehicular Technology Conference[C].Baltimore,MD,USA,IEEE,2007.1563-1567.
[11] WANG Zhe,Salous S.Time series ARIMA model of spectrum occupancy for cognitive radio[A].IET Seminar on Cognitive Radio and Software Defined Radios[C].London,IET,2008.1-4.
[12] 王磊,苏东林,谢树果,等.基于EGARCH过程的电磁频谱占用状态波动特性分析[J].电子与信息学报,2012,34(11):2767-2773. WANG lei,SU Donglin,XIE Shuguo,et al.Electromagnetic spectrum occupancy state volatility analysis based on egarch process[J].Journal of Electronics and Information Technology,2012,34(11):2767-2773.(in Chinese)
[13] HUANG N E,SHEN Z,LONG S,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London Series A,1998,454:903-995.
[14] ZHU Z H,SUN Y L,JI Yu.Short-term load forecasting based on empirical mode decomposition and least square support vector machine[J].Relay,2007,35(8):38-40.
[15] 刘岱,庞松岭,骆伟.基于EEMD与动态神经网络的短期负荷预测[J].东北电力大学学报,2009,29(6):20-26. LIU Dai,PANG Songling,LUO Wei.Power system short-term load forecasting based on EEMD and dynamic neural network[J].Journal of Northeast Dianli University (Natural Science Edition),2009,29(6):20-26.(in Chinese) |