电子学报 ›› 2017, Vol. 45 ›› Issue (12): 3005-3011.DOI: 10.3969/j.issn.0372-2112.2017.12.024
康世泽, 马宏, 黄瑞阳
收稿日期:
2015-07-13
修回日期:
2015-12-23
出版日期:
2017-12-25
作者简介:
基金资助:
KANG Shi-ze, MA Hong, HUANG Rui-yang
Received:
2015-07-13
Revised:
2015-12-23
Online:
2017-12-25
Published:
2017-12-25
摘要: 针对在线文本情感摘要生成问题,本文提出了一种基于Opinosis图和马尔科夫随机游走模型的情感摘要框架.首先,该框架将原始文本转化为Opinosis图,并利用其挖掘出文本中的特征词,这些特征词可以用来对原始文本的句子进行分类;其次本文在基于聚类的条件马尔科夫随机游走模型的基础上增加了情感层,改进后的模型可以判断同一聚类中各句子的情感倾向是否具有代表性并结合情感和聚类信息对句子进行排序.实验结果表明,本文提出的方法与基准算法相比在ROUGE(Recall-Oriented Understudy for Gisting Evaluation)值上具有明显提高.
中图分类号:
康世泽, 马宏, 黄瑞阳. 一种基于Opinosis图和马尔科夫随机游走模型的多文本情感摘要框架[J]. 电子学报, 2017, 45(12): 3005-3011.
KANG Shi-ze, MA Hong, HUANG Rui-yang. An Opinosis and MRW Based Sentiment Summarization Framework[J]. Acta Electronica Sinica, 2017, 45(12): 3005-3011.
[1] 林莉媛,王中卿,李寿山,等.基于PageRank的中文多文档文本情感摘要[J].中文信息学报,2014,28(2):85-90. Lin Li-yuan,Wang Zhong-qing,Li Shoushan et al.Chinese multi-document opinion summarization via PageRank[J].Journal of Chinese Information Processing,2014,28(2):85-90.(in Chinese) [2] 荀静,刘培玉,杨玉珍,张艳辉.基于潜在狄利克雷分布模型的多文档情感摘要[J].计算机应用,2014,34(6):1636-1640. XUN Jing,LIU Peiyu,YANG Yuzhen,ZHANG Yanhui.Multi-document sentiment summarization based on latent Dirichlet allocation model[J].Journal of Computer Applications,2014,34(6):1636-1640. [3] Jiang L,Yu M,Zhou M,et al.Target-dependent twitter sentiment classification[A].Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies-Volume 1.Association for Computational Linguistics[C].Portland,Oregon:ACM,2011.151-160. [4] Singh V K,Piryani R,Uddin A,et al.Sentiment analysis of movie reviews:A new feature-based heuristic for aspect-level sentiment classification[A].Automation,Computing,Communication,Control and Compressed Sensing(iMac4s),2013 International Multi-Conference onAutomation,Computing,Communication,Control and Compressed Sensing[C].India,Kottayam:IEEE,2013.712-717. [5] Di Fabbrizio G,Aker A,Gaizauskas R.Summarizing online reviews using aspect rating distributions and language modeling[J].IEEE Intelligent Systems,2013,28(3):28-37. [6] Yu J,Zha Z J,Wang M,et al.Aspect ranking:identifying important product aspects from online consumer reviews[A].Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies-Volume 1.Association for Computational Linguistics[C].Stroudsburg,PA,USA:ACM,2011.1496-1505. [7] Wang D,Zhu S,Li T,et al.Multi-document summarization using sentence-based topic models.[A].Meeting of the Association for Computational Linguistics[C].Suntec,Singapore:ACM,2009.297-300. [8] Zhao W X,Jiang J,Yan H,et al.Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid[A].Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics[C].Massachusetts,USA:ACM,2010.56-65. [9] Jo Y,Oh A H.Aspect and sentiment unification model for online review analysis[A].Proceedings of the fourth ACM international conference on Web search and data mining[C].Hong Kong,China:ACM,2011.815-824. [10] 欧阳继红,刘燕辉,李熙铭,等.基于LDA的多粒度主题情感混合模型[J].电子学报,2015,43(9):1875-1880. Ouyang Ji-hong,Liu Yan-hui,Li Xi-ming,et al.Multi-grain sentiment/topic model based on LDA[J].Acta Electronica Sinica,2015,43(9):1875-1880. [11] Ganesan K,Zhai CX,Han J.Opinosis:A graph-based approach to abstractive summarization of highly redundant opinions[A].Proceedings of the 23rd International Conference on Computational Linguistics.Asisocation for Computational Linguistics[C].Beijing:ACM,2010.340-348. [12] Wan X,Yang J.Multi-document summarization using cluster-based link analysis[A].Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[C].New York,NY,USA:ACM,2008.299-306. [13] Lin C Y,Hovy E.Automatic evaluation of summaries using n-gram co-occurrence statistics[A].Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1.Association for Computational Linguistics[C].Stroudsburg,PA,USA:ACM,2003.71-78. [14] Gustavsson P,Jönsson A.Text summarization using random indexing and pagerank[A].Proceedings of the third Swedish Language Technology Conference(SLTC-2010)[C].Linköping,Sweden:Research Gate,2010.pp-pp [15] Li F,Tang Y,Huang M,et al.Answering opinion questions with random walks on graphs[A].Joint Conference of the,Meeting of the ACL and the,International Joint Conference on Natural Language Processing of the Afnlp:Volume.Association for ComputationalLinguistics[C].Suntec,Singapore:ACM2009:737-745. |
[1] | 王子为, 鲁继文, 周杰. 基于自适应梯度优化的二值神经网络[J]. 电子学报, 2023, (): 1-10. |
[2] | 刘金平, 吴娟娟, 张荣, 徐鹏飞. 基于结构重参数化与多尺度深度监督的COVID-19胸部CT图像自动分割[J]. 电子学报, 2023, (): 1-9. |
[3] | 张笑宇, 沈超, 蔺琛皓, 李前, 王骞, 李琦, 管晓宏. 面向机器学习模型安全的测试与修复[J]. 电子学报, 2023, (): 1-35. |
[4] | 王炼红, 罗志辉, 林飞鹏, 李潇瑶. 采用多头注意力机制的C&RM-MAKT预测算法[J]. 电子学报, 2022, (): 1-9. |
[5] | 苏田田, 王慧敏, 张小凤. 基于多分支瓶颈结构的轻量型图像分类算法研究[J]. 电子学报, 2022, (): 1-9. |
[6] | 刘芳, 朱天贺, 苏卫星, 刘阳. 基于高斯隐马尔可夫模型的人机共享控制区域化决策算法[J]. 电子学报, 2022, 50(11): 2659-2667. |
[7] | 桑海峰, 陈旺兴, 王海峰, 王金玉. 基于多模式时空交互的行人轨迹预测模型[J]. 电子学报, 2022, 50(11): 2806-2812. |
[8] | 刘耿耿, 李泽鹏, 郭文忠, 陈国龙, 徐宁. 面向超大规模集成电路物理设计的通孔感知的并行层分配算法[J]. 电子学报, 2022, 50(11): 2575-2583. |
[9] | 魏博文, 全红艳. 基于语义与形态特征融合的语义分割网络[J]. 电子学报, 2022, 50(11): 2688-2697. |
[10] | 姚睿, 朱享彬, 周勇, 王鹏, 张艳宁, 赵佳琦. 基于重要特征的视觉目标跟踪可迁移黑盒攻击方法[J]. 电子学报, 2022, (): 1-10. |
[11] | 金紫凤, 潘思聪, 危辉. 可变环境下基于位姿变换矩阵的机器人无标定手眼协调方法[J]. 电子学报, 2022, 50(10): 2318-2328. |
[12] | 魏钰轩, 陈莹. 基于自适应层信息熵的卷积神经网络压缩[J]. 电子学报, 2022, 50(10): 2398-2408. |
[13] | 马百腾, 张士伟, 高常鑫, 桑农. 面向行为边界框生成的端到端时间全局相关网络[J]. 电子学报, 2022, 50(10): 2452-2461. |
[14] | 肖斌, 陈嘉博, 毕秀丽, 张俊辉, 李伟生, 王国胤, 马旭. 基于一维卷积神经网络与循环神经网络串联的心音分析方法[J]. 电子学报, 2022, 50(10): 2425-2432. |
[15] | 周登文, 李文斌, 李金新, 黄志勇. 一种轻量级的多尺度通道注意图像超分辨率重建网络[J]. 电子学报, 2022, 50(10): 2336-2346. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||