[1] KENNEDY J,EBERHART R C.Particle swarm optimization[A].Proceedings of IEEE International Conference on Neural Networks[C]. Perth:IEEE,1995.1942-1948.
[2] 丁旭,吴晓蓓,黄成.基于改进粒子群算法和特征点集的无线传感器网络覆盖问题研究[J].电子学报,2016,44(4):967-973. DING Xu,WU Xiao-bei,HUANG Cheng.Area coverage problem based on improved PSO algorithm and feature point set in wireless sensor networks[J].Acta Electronica Sinica,2016,44(4):967-973.(in Chinese)
[3] XIONG T,BAO Y,HU Z,et al.Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms[J].Information Sciences,2015,305:77-92.
[4] 李文锋,梁晓磊,张煜.具有异构分簇的粒子群优化算法研究[J].电子学报,2012,40(11):2194-2199. LI Wen-feng,LIANG Xiao-lei,ZHANG Yu.Research on PSO with clusters and heterogeneity[J].Acta Electronica Sinica,2012,40(11):2194-2199.(in Chinese)
[5] TANWEER M R,SURESH S,SUNDARARAJAN N.Dynamic mentoring and self-regulation based particle swarm optimization algorithm for solving complex real-world optimization problems[J].Information Sciences,2016,326:1-24.
[6] 邵鹏,吴志健,周炫余,等.基于折射原理反向学习模型的改进粒子群算法[J].电子学报,2015,43(11):2137-2144. SHAO Peng,WU Zhi-jian,ZHOU Xuan-yu,et al.Improved particle swarm optimization algorithm based on opposite learning of refraction[J].Acta Electronica Sinica,2015,43(11):2137-2144.(in Chinese)
[7] LIANG J J,QIN A K,SUGANTHAN P N,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computation,2006,10(3):281-295.
[8] NASIR M,DAS S,MAITY D,et al.A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization[J].Information Sciences,2012,209:16-36.
[9] LYNN N,SUGANTHAN P N.Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation[J].Swarm and Evolutionary Computation,2015,24:11-24.
[10] LUENBERGER DG,YE Y.Linear and Nonlinear Programming (Fourth Edition)[M].Switzerland:Springer International Publishing,2015.
[11] PABLO M.On evolution,search,optimization,genetic algorithms and martial arts:towards memetic algorithms[A].Caltech Concurrent Computation Program,Technique Report[R].USA,1989.158-179.
[12] ZHAO S Z,LIANG J J,SUGANTHAN P N,et al.Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization[A].IEEE Congress on Evolutionary Computation[C].Hong Kong,China:IEEE,2008.3845-3852.
[13] HAN F,LIU Q.An improved hybrid PSO based on ARPSO and the quasi-newton method[A].International Conference in Swarm Intelligence[C].Cham:Springer International Publishing,2015.460-467.
[14] TRELEA I C.The particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Processing Letters,2003,85(6):317-325.
[15] BROYDEN C G,DENNIS J E,MORé J J.On the local and superlinear convergence of quasi-newton methods[J].Journal of the Institute of Mathematics & Its Applications,1973,12(3):223-245.
[16] PETALAS Y G,PARSOPOULOS K E,VRAHATIS M N.Memetic particle swarm optimization[J].Annals of Operations Research,2007,156(1):99-127.
[17] PARSOPOULOS KE,VRAHATIS MN.Unified particle swarm optimization in dynamic environments.Applications of evolutionary computing[A].FRANZ R.Proceedings of EvoWorkshops[C].Berlin Heidelberg:Springer,2005.590-599.
[18] PERAM T,VEERAMACHANENI K,Mohan CK.Fitness-distance-ratio based particle swarm optimization[A].Proceedings of IEEE Swarm Intelligence Symposium[C].Indianapolis:IEEE,2003.174-181.
[19] TANWEER M R,SURESH S,SUNDARARAJAN N.Self regulating particle swarm optimization algorithm[J].Information Sciences,2015,294:182-202. |