电子学报 ›› 2018, Vol. 46 ›› Issue (2): 486-494.DOI: 10.3969/j.issn.0372-2112.2018.02.031

• 学术论文 • 上一篇    下一篇

基于双曲函数的双忆阻器混沌电路多稳态特性分析

闵富红1, 王珠林1,2, 曹弋1, 王恩荣1   

  1. 1. 南京师范大学电气与自动化工程学院, 江苏南京 210042;
    2. 中核武汉核电运行技术股份有限公司 湖北武汉 430223
  • 收稿日期:2017-03-02 修回日期:2017-06-15 出版日期:2018-02-25 发布日期:2018-02-25
  • 通讯作者: 闵富红
  • 作者简介:王珠林,男,1990年生,硕士,控制理论与控制工程专业,研究方向为非线性系统的混沌控制与同步.E-mail:302576481@qq.com
  • 基金资助:
    国家自然科学基金(No.51475246);江苏省自然科学基金(No.BK20131402)

Multistability Analysis of a Dual-Memristor Circuit Based on Hyperbolic Function

MIN Fu-hong1, WANG Zhu-lin1,2, CAO Yi1, WANG En-rong1   

  1. 1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, Jiangsu 210042, China;
    2. China Nuclear Power Operation Technology Corporation, LTD. Wuhan, Hubei 430223, China
  • Received:2017-03-02 Revised:2017-06-15 Online:2018-02-25 Published:2018-02-25

摘要: 基于经典蔡氏混沌振荡电路,引入一种双曲余弦函数的新型磁控忆阻器模型,设计含有两个双曲余弦忆阻器的混沌电路系统,讨论了系统平衡点集面的稳定区间.选择不同的忆阻初始值进行数值仿真,通过分岔图与Lyapunov指数谱研究双曲忆阻混沌系统的多稳态特性.结果表明,含双曲函数的双忆阻混沌电路具有复杂的动力学行为,运动轨迹不仅依赖于电路参数,还受电路的初始状态影响,由此产生了不同拓扑结构的混沌吸引子与不同周期运动的多稳态隐藏吸引子共存现象.

关键词: 忆阻器, 多稳态特性, 动力学行为, 混沌系统

Abstract: A novel magnetron memristor model based on the hyperbolic sine function is proposed.And then,a new type of five-dimensional dual-memristor chaotic circuit is built by replacing the nonlinear resistance in the Chua's system with the magnetron memristor model.It is found that the dual-memristor system has the equilibrium point set.In addition,the numerical simulation of the memristive system is carried out by selecting the different initial values of the system and the multistribution characteristics of the fifth-order chaotic system are analyzed in detail by using the bifurcation diagram and Lyapunov exponent spectrum.The results show that the dual-memristive chaotic circuit is different from the dynamic behavior of the chaotic system.The motion trajectory of system depends not only on the circuit parameters but also on the initial state of the circuit,resulting in the coexistence of different periodic motions and different chaotic attractors with different topologies.

Key words: memristor, multistable characteristic, dynamical behavior, chaotic system

中图分类号: