[1] Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[2] Candès E J,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,52(2):489-509.
[3] Bigot J,Boyer C,Weiss P.An analysis of block sampling strategies in compressed sensing[J].IEEE Transactions on Information Theory,2016,62(4):2125-2139.
[4] 王宏志,王贤龙,周婷婷.基于光滑L0范数的图像分块压缩感知恢复算法[J].吉林大学学报:工学版,2015,45(1):322-327. WANG Hong-zhi,WANG Xian-Long,ZHOU Ting-Ting.Image block compressive sensing reconstruction based on smooth L0 norm[J].Journal of Jilin University (Engineering and Technology Edition),2015,45(1):322-327.(in Chinese)
[5] 王文东,王尧,王建军.基于迭代重赋权最小二乘算法的块稀疏压缩感知[J].电子学报,2015,43(5):922-928. WANG Wen-Dong,WANG Yao,WANG Jian-Jun.Iterative reweighted least squares algorithm for block-sparse compressed sensing[J].Acta Electronica Sinica,2015,43(5):922-928.(in Chinese)
[6] Zhang J,Han G,Fang Y.Deterministic construction of compressed sensing matrices from protograph LDPC codes[J].IEEE Signal Processing Letters,2015,22(11):1960-1964.
[7] 党骙,马林华,田雨,等.基于m序列的压缩感知测量矩阵构造[J].西安电子科技大学学报,2015,42(2):186-192. DANG Kui,MA Lin-Hua,TIAN Yu,et al.Construction of the compressive sensing measurement matrix based on m sequences[J].Journal of Xidian University,2015,42(2):186-192.(in Chinese)
[8] 朱志臻,周崇彬,刘发林,李滨兵,张志达.用于压缩感知的二值化测量矩阵[J].微波学报,2014,30(2):79-83. ZHU Zhi-Zhen,ZHOU Chong-Bin,LIU Fa-Lin,Li Bin-Bing,Zhang Zhi-DA.Binarized measurement matrix for compressive sensing[J].Journal of Microwaves,2014,30(2):79-83.(in Chinese)
[9] Ravelomanantsoa A,Rabah H,Rouane A.Compressed sensing:a simple deterministic measurement matrix and a fast recovery algorithm[J].IEEE Transactions on Instrumentation and Measurement,2015,64(12):3405-3413.
[10] YUAN H Y,SONG H Y,SUN X,et al.Compressive sensing measurement matrix construction based on improved size compatible array LDPC code[J].Image Processing IET,2015,9(11):993-1001.
[11] ZHANG B J,TONG X,WANG W,et al.The research of Kronecker product-based measurement matrix of compressive sensing[J].EURASIP Journal on Wireless Communications and Networking,2013,2013(1):1-5.
[12] M F Duarte,R G Baraniuk.Kronecker compressive sensing[J].IEEE Transactions on Image Processing,2012,21(2):494-504.
[13] CHEN D Z,QI H S,LI Z Q.Analysis and Control of Boolean Networks:A Semi-tensor Product Approach[M].London:Springer,2011.19-53.
[14] BU H,TAO R,BAI X,ZHAO J.Regularized smoothed l 0 norm algorithm and its application to CS-based radar imaging[J].Signal Processing,2016,122(C):115-122.
[15] ZHANG C,SONG S,WEN X,YAO L,et al.Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data[J].Journal of Neuroscience Methods,2015,245:15-24.
[16] 程晓良,郑璇,韩渭敏.求解欠定线性方程组稀疏解的算法[J].高校应用数学学报,2013,28(2):235-248. CHENG X L,ZHENG X,HAN W M.Algorithms on the sparse solution of under-determined linear systems[J].Applied Mathematics A Journal of Chinese Universities,2013,28(2):235-248.(in Chinese)
[17] ZHANG S,ZHU Y,DONG G,et al.Truncated SVD-based compressive sensing for downward-looking three-dimensional SAR imaging with uniform/nonuniform linear array[J].Geoscience & Remote Sensing Letters IEEE,2015,12(9):1-5.
[18] Barr S.Medical image samples[OL].http://www.barre.nom.fr/medical/samples,2016-11-10.
[19] WANG Z,Bovik A C,Sheikh H R,Simoncelli,E P.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. |