基于广义Gamma分布的高分辨率SAR图像海岸线检测

王彬, 王国宇

电子学报 ›› 2018, Vol. 46 ›› Issue (4) : 827-833.

PDF(6792 KB)
PDF(6792 KB)
电子学报 ›› 2018, Vol. 46 ›› Issue (4) : 827-833. DOI: 10.3969/j.issn.0372-2112.2018.04.009
学术论文

基于广义Gamma分布的高分辨率SAR图像海岸线检测

  • 王彬1,2, 王国宇1
作者信息 +

A Coastline Detection Method in High-Resolution SAR Images Based on the Generalized Gamma Distribution

  • WANG Bin1,2, WANG Guo-yu1
Author information +
文章历史 +

摘要

本文针对高分辨率SAR图像,采用广义Gamma分布(GΓD)对杂波进行建模,在此基础上提出一种基于水平集分割的海岸线检测方法.GΓD是一种高度灵活的经验分布模型,能够对SAR图像不同类型的地物进行有效建模,其参数可由对数累量法估计得到.基于该分布建立能量泛函,并通过水平集方法最小化能量泛函进行海陆分割,得到海岸线检测结果.利用两幅TerraSAR-X实测SAR图像实验证明,该方法可以实现更精确的海岸线检测.

Abstract

A new level set method has been proposed for coastline detection in high-resolution SAR images based on the generalized Gamma distribution (G Γ D). The G Γ D is a statistical model with high flexibility, which is able to characterize the diversity of scenes in SAR images effectively. The parameter estimation of the G Γ D is realized by the method of log-cumulants. Then the energy functional is formulated based on the G Γ D. The coastline detection is achieved by minimizing the proposed energy functional using the level set segmentation method. Experimental results with measured TerraSAR-X images have demonstrated that the proposed method can obtain more precise coastline detection results.

关键词

合成孔径雷达 / 广义Gamma分布 / 水平集 / 海岸线检测

Key words

synthetic aperture radar (SAR) / generalized Gamma distribution (G &Gamma / D) / level set method / coastline detection

引用本文

导出引用
王彬, 王国宇. 基于广义Gamma分布的高分辨率SAR图像海岸线检测[J]. 电子学报, 2018, 46(4): 827-833. https://doi.org/10.3969/j.issn.0372-2112.2018.04.009
WANG Bin, WANG Guo-yu. A Coastline Detection Method in High-Resolution SAR Images Based on the Generalized Gamma Distribution[J]. Acta Electronica Sinica, 2018, 46(4): 827-833. https://doi.org/10.3969/j.issn.0372-2112.2018.04.009
中图分类号: TN957.52   

参考文献

[1] Fan J,Chu J,Jiang D,et al.Remote sensing images coastline detection based on geometric active contour models[A].IEEE Sixth International Conference on Intelligent Control and Information Processing[C].Wuhan,China:IEEE,2015.362-366.
[2] Mashaly A S,AbdElkawy E F,Mahmoud T A.Ship detection in SAR images using efficient land masking methods[A].International Society for Optics and Photonics[C].Baltimore,USA:SPIE Defense Security,2014.90930G-90930G-9.
[3] Niedermeier A,Romaneessen E,Lehner S.Detection of coastlines in SAR images using wavelet methods[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2270-2281.
[4] 毛成林,万寿红,岳丽华,等.一种基于双树复小波变换的SAR图像边缘检测算法[J].中国科学院大学学报,2014,31(2):238-242,248. Mao C L,Wan S H,Yue L H,et al.An edge detection algorithm of SAR images based on dual-tree complex wavelet transform[J].Journal of University of Chinese Academy of Sciences,2014,31(2):238-242,248.(in Chinese)
[5] Silveira M,Heleno S.Separation between water and land in SAR images using region-based level sets[J].IEEE Geoscience and Remote Sensing Letters,2009,6(3):471-475.
[6] 黄魁华,张军.局部统计活动轮廓模型的SAR图像海岸线检测[J].遥感学报,2011,15(4):737-749. Huang K H,Zhang J.A coastline detection method using SAR images based on the local statistical active contour model[J].Journal of Remote Sensing,2011,15(4):737-749.(in Chinese)
[7] Ding X,Nunziata F,Li X,et al.Performance analysis and validation of waterline extraction approaches using single-and dual-polarimetric SAR data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(3):1019-1027.
[8] Liu Z,Li F,Li N,et al.A novel region-merging approach for coastline extraction from sentinel-1A IW mode SAR imagery[J].IEEE Geoscience and Remote Sensing Letters,2016,13(3):324-328.
[9] Yang X,Gao X,Tao D,et al.An efficient MRF embedded level set method for image segmentation[J].IEEE Transactions on Image Processing,2015,24(1):9-21.
[10] Ayed I B,Mitiche A,Belhadj Z.Multiregion level-set partitioning of synthetic aperture radar images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(5):793-800.
[11] Marques R C P,Medeiros F N,Nobre J S.SAR image segmentation based on level set approach and G0A model[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(10):2046-2057.
[12] Oliver C J.A model for non-Rayleigh scattering statistics[J].Journal of Modern Optics,1984,31(6):701-722.
[13] Frery A C,Muller H J,Yanasse C C F,et al.A model for extremely heterogeneous clutter[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(3):648-659.
[14] Delignon Y,Garello R,Hillion A.Statistical modelling of ocean SAR images[J].IEE Proceedings-Radar,Sonar and Navigation,1997,144(6):348-354.
[15] Oliver C J.Optimum texture estimators for SAR clutter[J].Journal of Physics D:Applied Physics,1993,26(11):1824.
[16] Tison C,Nicolas J M,Tupin F,et al.A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(10):2046-2057.
[17] Li H C,Hong W,Wu Y R,et al.On the empirical-statistical modeling of SAR images with generalized Gamma distribution[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(3):386-397.
[18] Qin X,Zou H,Zhou S,et al.Region-based classification of SAR images using Kullback-Leibler distance between generalized gamma distributions[J].IEEE Geoscience and Remote Sensing Letters,2015,12(8):1655-1659.
[19] Cui S,Schwarz G,Datcu M.A comparative study of statistical models for multilook SAR images[J].IEEE Geoscience and Remote Sensing Letters,2014,11(10):1752-1756.
[20] Krylov V A,Moser G,Serpico S B,et al.On the method of logarithmic cumulants for parametric probability density function estimation[J].IEEE Transactions on Image Processing,2013,22(10):3791-3806.
[21] Martin P,Réfrégier P,Goudail F,et al.Influence of the noise model on level set active contour segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(6):799-803.
[22] Abdou I E,Pratt W K.Quantitative design and evaluation of enhancement/thresholding edge detectors[J].Proceedings of the IEEE,1979,67(5):753-763.
[23] Vese L A,Chan T F.A multiphase level set framework for image segmentation using the Mumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293.
PDF(6792 KB)

Accesses

Citation

Detail

段落导航
相关文章

/