基于加权超图随机游走的文献关键词提取算法

马慧芳, 刘芳, 夏琴, 郝占军

电子学报 ›› 2018, Vol. 46 ›› Issue (6) : 1410-1414.

PDF(903 KB)
PDF(903 KB)
电子学报 ›› 2018, Vol. 46 ›› Issue (6) : 1410-1414. DOI: 10.3969/j.issn.0372-2112.2018.06.020
学术论文

基于加权超图随机游走的文献关键词提取算法

  • 马慧芳, 刘芳, 夏琴, 郝占军
作者信息 +

Keywords Extraction Algorithm Based on Weighted Hypergraph Random Walk

  • MA Hui-fang, LIU Fang, XIA Qin, HAO Zhan-jun
Author information +
文章历史 +

摘要

针对科技文献类标题短文本关键词提取时,已有自然语言处理算法难以建模文献时间与权威性且短文本词语较少建模往往存在高维稀疏问题,本文提出了一个综合实时性以及权威性的关键词提取算法为研究者进行相关推荐.该方法将文献标题视为超边,将标题中不同词项视为超点来构建超图,并对超图中的超边与超点同时加权,进而设计一种基于加权超图随机游走的关键词提取算法对文献标题的词项进行提取.该模型通过对文献来源,发表年份以及被引次数建模来对超边进行加权,根据节点之间的关联度以及每对节点在特定标题中的共现距离对超点加权.最后,通过超图上的随机游走计算出节点的重要性进而确立可推荐的关键词.实验表明,与三种基准短文本关键词提取算法相比,本文算法在精确率和召回率方面均有所提高.

Abstract

It is difficult for the existing natural language processing algorithms to model the time and authority of short texts such as paper titles of scientific literature.Besides,the short texts always tend to have fewer words and thus suffer from high dimension and sparsity.A keyword extraction method involving both real-time and authoritativeness is presented.A weighted hyper-graph is constructed where vertexes represent weighted terms and weighted hyper-edges measure the semantic relatedness of both binary relations and nary relations among terms.On one hand,the source of the documents,the year of publication and number of citations are considered for weighting hyper-edges,on the other hand,the degree of association between the nodes and co-occurrence distance for each pair of nodes in particular title are calculated for weighting hyper-vertexes.The random walk approach is performed on the weighted hyper-graph to obtain the recommended keywords.Experimental results demonstrated that compared with three baseline algorithms,the proposed approach is able to extract keywords with higher precision and recall.

关键词

加权超图 / 加权策略 / 关键词推荐 / 随机游走 / 自然语言处理 / 数据挖掘

Key words

weighted hypergraph / weighting strategy / keywords extraction / random walk / natural language processing / data mining

引用本文

导出引用
马慧芳, 刘芳, 夏琴, 郝占军. 基于加权超图随机游走的文献关键词提取算法[J]. 电子学报, 2018, 46(6): 1410-1414. https://doi.org/10.3969/j.issn.0372-2112.2018.06.020
MA Hui-fang, LIU Fang, XIA Qin, HAO Zhan-jun. Keywords Extraction Algorithm Based on Weighted Hypergraph Random Walk[J]. Acta Electronica Sinica, 2018, 46(6): 1410-1414. https://doi.org/10.3969/j.issn.0372-2112.2018.06.020
中图分类号: TP393.092   

参考文献

[1] Ma Hui-fang,Xing Yu-ying,et al.Leveraging term co-occurrence distance and strong classification features for short text feature selection[A].Proceedings of the 10th International Conference on Knowledge Science,Engineering and Management[C].Melbourne,Australia:Springer,2017.303-310.
[2] 刘喜平,万常选等.空间关键词搜索研究综述[J].软件学报,2016,27(2):329-347. Liu Xi-ping,Wan Chang-xuan,et al.Survey on spatial keyword search[J].Journal of Software,2016,27(2):329-347.(in Chinese)
[3] Ugo Erra,Sabrina Senatore,et al.Approximate TF-IDF based on topic extraction from massive message stream using the GPU[J].Information Sciences,2015,292(20):143-161.
[4] Song Shao-xu,Zhu Han,et al,Probabilistic correlation-based similarity measure on text records[J].Information Sciences,2014,289(1):8-24.
[5] Hua Wen,Wang Zhong-yuan,et al.Short text understanding through lexical-semantic analysis[A].Proceedings of the 31st International Conference on Data Engineering[C].Seoul,South Korea:IEEE,2015.495-506.
[6] Blei D M,Ng A Y,Jordan M I.Latent Dirichlet allocation[J].Journal of Machine Learning Research,2003,3(1):993-1022.
[7] Rahim Saeidi,Ramon Fernandez Astudillo,et al.Uncertain LDA:Including observation uncertainties in discriminative transforms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(7):1479-1488.
[8] Willyan D Abilhoa,Leandro N de Castro.A keyword extraction method from twitter messages represented as graphs[J].Applied Mathematics and Computation,2014,240(4):308-325.
[9] Zhou Deng-yong,Huang Jia-yuan,et al.Learning with hypergraphs:clustering,classification,and embedding[A].Proceedings of the 20th International Conference on Neural Information Processing Systems[C].Vancouver,Canada:MIT Press,2006.1601-1608.
[10] Li De-cong,Li Su-jian.Hypergraph-based inductive learning for generating implicit key phrases[A].Proceedings of the 20th International Conference on World Wide Web[C].Hyderabad,India:Springer,2011.77-78.
[11] Bellaachia A,Al-Dhelaan M.HG-Rank:A hypergraph-based keyphrase extraction for short documents in dynamic genre[A].Proceedings of the 4th Workshop on Making Sense of Microposts[C].Seoul,Korea:CEUR-WS,2014.42-49.

基金

国家自然科学基金 (No.61762078,No.61363058,No.61762079,No.61762080); 中科院智能信息处理重点实验室开放课题 (No.IIP2014-4); 广西可信软件重点实验室研究课题 (No.kx201705)
PDF(903 KB)

Accesses

Citation

Detail

段落导航
相关文章

/