[1] KRIM H,VIVERG M.Two decades of array signal processing research:the parametric approach[J].IEEE Signal Processing Magazine,1996,13(4):67-94.
[2] MALIOUTOV D,CETIN M,WILLSKY A S.A sparse signal reconstruction perspective for source localization with sensor arrays[J].IEEE Transactions on Signal Processing,2005,53(8):3010-3022.
[3] COTTER S F,RAO B D,ENGAN K,et al.Sparse solutions to linear inverse problems with multiple measurement vectors[J].IEEE Transactions on Signal Processing,2005,53(7):2477-2488.
[4] COTTER S F.Multiple snapshot matching pursuit for direction of arrival (DOA) estimation[A].Proceedings of the 15th European Signal Processing Conference[C].USA:IEEE,2007.247-251.
[5] HYDER M M,MAHATA K.Direction-of-arrival estimation using a mixed norm approximation[J].IEEE Transactions on Signal Processing,2010,58(9):4646-4655.
[6] YIN J H,CHEN T Q.Direction-of-arrival estimation using a sparse representation of array covariance vectors[J].IEEE Transactions on Signal Processing,2011,59(9):4489-4493.
[7] BLANCHARD J D,CERMAK M,HANLE D,et al.Greedy algorithms for joint sparse recovery[J].IEEE Transactions on Signal Processing,2014,62(7):1694-1704.
[8] 吴小川,邓维波,杨强.基于CS-MUSIC算法的DOA估计[J].系统工程与电子技术,2013,35(9):1821-1824. WU Xiao-chuan,DENG Wei-bo,YANG Qiang.DOA estimation method based on CS-MUSIC algorithm[J].Systems Engineering and Electronics,2013,35(9):1821-1824.(in Chinese)
[9] 林波,张增辉,朱炬波.基于压缩感知的DOA估计稀疏化模型与性能分析[J].电子与信息学报,2014,36(3):589-594. LIN Bo,ZHANG Zeng-hui,ZHU Ju-bo.Sparsity model and performance analysis of DOA estimation with compressive sensing[J].Journal of Electronics & Information Technology,2014,36(3):589-594.(in Chinese)
[10] 田野,练秋生,徐鹤.基于稀疏信号重构的DOA和极化角度估计算法[J].电子学报,2016,44(7):1548-1554. TIAN Ye,LIAN Qiu-sheng,XU He.DOA and polarization angle estimation algorithm based on sparse signal reconstructio n[J].Acta Electronica Sinica,2016,44(7):1548-1554.(in Chinese)
[11] 王彪,朱志慧,戴跃伟.基于具有时序结构的稀疏贝叶斯学习的水声目标DOA估计研究[J].电子学报,2016,44(3),693-698. WANG Biao,ZHU Zhi-hui,DAI Yue-wei.Direction of arrival estimation research for underwater acoustic target based on sparse Bayesian learning with temporally correlated source vectors[J].Acta Electronica Sinica,2016,44(3):693-698.(in Chinese)
[12] SONG A M,QIU T S.The equivalency of minimum error entropy criterion and minimum dispersion criterion for symmetric stable signal processing[J].IEEE Signal Processing Letters,2010,17(1):32-35.
[13] 张金凤,邱天爽,李森.冲激噪声环境下基于最大相关熵准则的韧性子空间跟踪新算法[J].电子学报,2015,43(3):483-488. ZHANG Jin-feng,Qiu Tian-shuang,LI Sen.A robust PAST algorithm based on maximum correntropy criterion for impulsive noise environments[J].Acta Electronica Sinica,2015,43(3):483-488.(in Chinese)
[14] YU L,QIU T S,LUAN S Y.Fractional time delay estimation algorithm based on the maximum correntropy criterion and the Lagrange FDF[J].Signal Processing,2015,111:222-229.
[15] Zhang J F,QIU T S,SONG A M,et al.A novel correntropy based DOA estimation algorithm in impulsive noise environments[J].Signal Processing,2014,104:346-357.
[16] CHEN B D,LEI X,LIANG J L,et al.Steady-state mean-square error analysis for adaptive filtering under the maximum correntropy criterion[J].IEEE Signal Processing Letters,2014,21(7):880-884.
[17] LIU W F,POKHAREL P P,PRINCIPE J C.Correntropy:properties and applications in non-Gaussian signal processing[J].IEEE Transactions on Signal Processing,2007,55(11):5286-5298.
[18] SHAO M,NIKIAS C L.Signal processing with fractional lower order moments:stable processes and their applications[J].Proceedings of the IEEE,1993,81(7):986-1010.
[19] BLUMENSATH T,DAVIES M E.Normalized iterative hard thresholding:guaranteed stability and performance[J].IEEE Journal of Selected Topics in Signal Processing,2010,4(2):298-309.
[20] CARRILLO R E,BARNER K E.Lorentzian iterative hard thresholding:robust compressed sensing with prior information[J].IEEE Transactions on Signal Processing,2013,61(19):4822-4833.
[21] LIU T H,MENDEL J M.A subspace-based direction finding algorithm using fractional lower order statistics[J].IEEE Transactions on Signal Processing,2001,49(8):1605-1613. |