[1] Mirbakhsh N,Ling C X.Improving top-n recommendation for cold-start users via cross-domain information[J].ACM Transactions on Knowledge Discovery from Data (TKDD),2015,9(4):http://dx.doi.org/10.1145/2724720.
[2] 张亮,柏林森,周涛.基于跨电商行为的交叉推荐算法[J].电子科技大学学报,2013(1):154-160. Zhang Liang,Bai Linsen,Zhou Tao.Crossover recommendation algorithm based on cross-merchants behavior[J].Journal of University of Electronic Science and Technology of China,2013(1):154-160.(in Chinese)
[3] Elkahky A M,Song Y,He X.A multi-view deep learning approach for cross domain user modeling in recommendation systems[A].Proceedings of the 24th International Conference on World Wide Web[C].International World Wide Web Conferences Steering Committee,2015.278-288.
[4] Fernández-Tobías I,Tomeo P,Cantador I,et al.Accuracy and diversity in cross-domain recommendations for cold-start users with positive-only feedback[A].Proceedings of the 10th ACM Conference on Recommender Systems[C].ACM,2016.119-122.
[5] Chen L,Zheng J,Gao M,et al.TLRec:transfer learning for cross-domain recommendation[A].Big Knowledge (ICBK),2017 IEEE International Conference on[C].IEEE,2017.167-172.
[6] Taneja A,Arora A.Cross domain recommendation using multidimensional tensor factorization[J].Expert Systems with Applications,2018,92:304-316.
[7] Zheng L,Noroozi V,Yu P S.Joint deep modeling of users and items using reviews for recommendation[A].Proceedings of the Tenth ACM International Conference on Web Search and Data Mining[C].ACM,2017.425-434.
[8] 王兴茂,张兴明,吴毅涛,潘俊池.基于启发式聚类模型和类别相似度的协同过滤推荐算法[J].电子学报,2016,44(7):1708-1713. Wang XingMao,Zhang Xingming,Wu Yitao,Pan Junchi.Collaborative filtering recommendation algorithm based on heuristic clustering model and class similarity[J].Acta Electronica Sinica,2016,44(7):1708-1713.(in Chinese)
[9] Xu Z,Zhang F,Wang W,et al.Exploiting trust and usage context for cross-domain recommendation[J].IEEE Access,2016,4:2398-2407.
[10] Singh A P,Gordon G J.Relational learning via collective matrix factorization[A].ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].ACM,2008.650-658.
[11] Jamali M,Lakshmanan L.HeteroMF:recommendation in heterogeneous information networks using context dependent factor models[A].International Conference on World Wide Web[C].ACM,2013.643-654.
[12] Shi J,Long M,Liu Q,et al.Twin Bridge Transfer Learning for Sparse Collaborative Filtering[M].Advances in Knowledge Discovery and Data Mining.2013.496-507.
[13] Yan Z,Wei L,Lu Y,et al.You are what apps you use:Transfer Learning for Personalized Content and Ad Recommendation[A].Proceedings of the Eleventh ACM Conference on Recommender Systems[C].ACM,2017.350-350.
[14] Jiang M,Cui P,Chen X,et al.Social recommendation with cross-domain transferable knowledge[J].IEEE Transactions on Knowledge & Data Engineering,2015,27(11):3084-3097.
[15] Li B,Yang Q,Xue X.Can Movies and books collaborate cross-domain collaborative filtering for sparsity reduction[A].IJCAI 2009,Proceedings of the International Joint Conference on Artificial Intelligence[C].Pasadena,California,Usa:DBLP,2009.2052-2057.
[16] Li B,Yang Q,Xue X.Transfer learning for collaborative filtering via a rating-matrix generative model[A].International Conference on Machine Learning,ICML 2009[C].Montreal,Quebec,Canada:DBLP,2009.78.
[17] Fernández-Tobías I,Tomeo P,Cantador I,et al.Accuracy and diversity in cross-domain recommendations for cold-start users with positive-only feedback[A].Proceedings of the 10th ACM Conference on Recommender Systems[C].ACM,2016.119-122.
[18] Pan W.A survey of transfer learning for collaborative recommendation with auxiliary data[J].Neurocomputing,2016,177:447-453.
[19] Gao S,Luo H,Chen D,et al.Cross-domain recommendation via cluster-level latent factor model[A].Joint European Conference on Machine Learning and Knowledge Discovery in Databases[C].Berlin,Heidelberg:Springer,2013.161-176.
[20] Berkovsky S,Kuflik T,Ricci F.Mediation of user models for enhanced personalization in recommender systems[J].User Modeling and User-Adapted Interaction,2008,18(3):245-286.
[21] Hoyer P O.Non-negative matrix factorization with sparseness constraints[J].Journal of Machine Learning Research,2004,5(1):1457-1469. |