[1] 刘建伟,刘媛,罗雄麟.半监督学习方法[J].计算机学报,2015,38(8):1592-1617. LIU Jian-wei,LIU Yuan,LUO Xiong-lin.Semi-supervised learning methods[J].Chinese Journal of Computers,2015,38(8):1592-1617.(in Chinese)
[2] 周志华.基于分歧的半监督学习[J].自动化学报,2013,39(11):1871-1878. ZHOU Zhi-hua.Disagreement-based semi-supervised learning[J].Acta Automatic Sinica,2013,39(11):1871-1878.(in Chinese)
[3] 蔡毅,朱秀芳,孙章丽,等.半监督集成学习综述[J].计算机科学,2017,44(s1):7-13. CAI Yi,ZHU Xiu-fang,SUN Zhang-li,et al.Semi-supervised and ensemble learning:a review[J].Computer Science,2017,44(s1):7-13.(in Chinese)
[4] BLUM A,MITCHELL T.Combining labeled and unlabeled data with co-training[A].Eleventh Conference on Computational Learning Theory[C].New York:ACM Press,1998.92-100.
[5] ZHOU Z H,LI M.Tri-training:exploiting unlabeled data using three classifiers[J].IEEE Transactions on Knowledge & Data Engineering,2005,17(11):1529-1541.
[6] LI M,ZHOU Z H.Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2007,37(6):1088-1098.
[7] DENG C,GUO M Z.A new co-training-style random forest for computer aided diagnosis[J].Journal of Intelligent Information Systems,2011,36(3):253-281.
[8] 于重重,商利利,谭励,等.一种增强差异性的半监督协同分类算法[J].电子学报,2013,41(1):35-41. YU Chong-chong,SHANG Li-li,TAN Li,et al.A semi-supervised collaboration classification algorithm with enhanced difference[J].Acta Electronica Sinica,2013,41(1):35-41.(in Chinese)
[9] 陈思,苏松志,李绍滋,等.基于在线半监督boosting的协同训练目标跟踪算法[J].电子与信息学报,2014,36(4):888-895. CHEN Si,SU Song-zhi,LI Shao-zi,et al.A novel co-training object tracking algorithm based on online semi-supervised boosting[J].Journal of Electronics & Information Technology,2014,36(4):888-895.(in Chinese)
[10] 张磊,邵振峰,周熙然,等.聚类特征和SVM组合的高光谱影像半监督协同分类[J].测绘学报,2014,43(8):855-861. ZHANG Lei,SHAO Zhen-feng,ZHOU Xi-ran,et al.Semi-supervised collaboration classification for hyperspectral remote sensing image with combination of cluster feature and SVM[J].Acta Geodaetica et Cartographica Sinica,2014,43(8):855-861.(in Chinese)
[11] 邹保平,戚伟强.基于改进Co-Forest的主机故障预警方法[J].电子设计工程,2017,25(5):65-69. ZOU Bao-ping,QI Wei-qiang.Fault alarming method for host hardware based on improved Co-Forest[J].Electronic Design Engineering,2017,25(5):65-69.(in Chinese)
[12] JIA P,HUANG T,DUAN S,et al.A novel semi-supervised electronic nose learning technique:M-Training[J].Sensors,2016,16(3):370.
[13] 杨艺,韩德强,韩崇昭.一种基于证据距离的多分类器差异性度量[J].航空学报,2012,33(6):1093-1099. YANG Yi,HAN De-qiang,HAN Chong-zhao.A novel diversity measure of multiple classifier systems based on distance of evidence[J].Acta Aeronautica et Astronautica Sinica,2012,33(6):1093-1099.(in Chinese)
[14] 韩德强,杨艺,韩崇昭.DS证据理论研究进展及相关问题探讨[J].控制与决策,2014,29(1):1-11. HAN De-qiang,YANG Yi,HAN Chong-zhao.Advances in DS evidence theory and related discussions[J].Control and Decision,2014,29(1):1-11.(in Chinese)
[15] 杜利敏,徐扬.基于证据理论的不平衡数据半监督分类方法[J].计算机应用研究,2018,35(2):342-345. DU Li-min,XU Yang.Semi-supervised classification method for imbalanced data based on evidence theory[J].Application Research of Computers,2018,35(2):342-345.(in Chinese)
[16] LIU Z,PAN Q,MERCIER G,et al.A new incomplete pattern classification method based on evidential reasoning[J].IEEE Transactions on Cybernetics,2015,45(4):635-646.
[17] 杨新武,马壮,袁顺.基于弱分类器调整的多分类Adaboost算法[J].电子与信息学报,2016,38(2):373-380. YANG Xin-wu,MA Zhuang,YUAN Shun.Multi-class Adaboost algorithm based on the adjusted weak classifier[J].Journal of Electronics & Information Technology,2016,38(2):373-380.(in Chinese)
[18] 孙伟超,许爱强,李文海.区间信度结构下的证据合成方法研究[J].电子学报,2016,44(11):2726-2734. SUN Wei-chao,XU Ai-qiang,LI Wen-hai.Approaches for combination of interval-valued belief structures[J].Acta Electronica Sinica,2016,44(11):2726-2734.(in Chinese)
[19] 郭强,何友,关欣,等.一种多子焦元信度赋值非零情况下的DSmT近似融合推理方法[J].电子学报,2015,43(10):2069-2075. GUO Qiang,HE You,GUAN Xin,et al.An DSmT approximate reasoning method on the condition of non-zero multiple focal elements[J].Acta Electronica Sinica,2015,43(10):2069-2075.(in Chinese)
[20] SMETS P,KENNES R.The transferable belief model[J].Artificial Intelligence,1994,66(2):191-234.
[21] UCI machine learning repository[DB].http://archive.ics.uci.edu/ml/datasets,2017-10-10.
[22] PLATT J C.Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[J].Advances in Large Margin Classifiers,2000,10(4):61-74. |