[1] HUANG N E,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of The Royal Society A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
[2] HUANG N,et al.On insantaneous frequency[J].Advances in Adaptive Data Analysis,2011,2(1):177-229.
[3] HUANG J,et al.An improved EMD based on cubic spline interpolation of extremum centers[J].Journal of Vibroengineering,2015,17(5):2393-2409.
[4] LI Y B,et al.An improvement EMD method based on the optimized rational Hermite interpolation approach and its application to gear fault diagnosis[J].Measurement,2015,63:330-345.
[5] YANG L J,et al.An improved envelope algorithm for eliminating undershoots[J].Digital Signal Processing,2013,23(1):401-411.
[6] YANG L J,et al.The theoretical analysis for an iterative envelope algorithm[J].Digital Signal Processing,2015,38:32-42.
[7] YANG Y L,et al.An analytical expression for empirical mode decomposition based on b-spline interpolation[J].Circuits Systems and Signal Processing,2013,32(6):2899-2914.
[8] ZHENG J,et al.A b-spline quasi-interpolation EMD method for similarity/dissimilarity analysis of DNA sequences[J].Journal of Fiber Bioengineering and Informatics,2015,8(2):347-355.
[9] CHEN Q,et al.A B-spline approach for empirical mode decompositions[J].Advances in Computational Mathematics,2006,24(1-4):171-195.
[10] XU Z G,et al.An alternative envelope approach for empirical mode decomposition[J].Digital Signal Processing,2010,20(1):77-84.
[11] 朱伟芳,等.一种最小长度约束的EMD包络拟合方法[J].电子学报,2012,40(9):1909-1912. ZHU W F,et al.A least-length constrained envelope approach for EMD[J].Acta Electronica Sinica,2012,40(9):1909-1912.(in Chinese)
[12] ZHU W F,et al.A flattest constrained envelope approach for empirical mode decomposition[J].Plos One,2013,8(4):e61739.
[13] ZHAO D,et al.An improved EEMD method based on the adjustable cubic trigonometric cardinal spline interpolation[J].Digital Signal Processing,2017,64(Supplement C):41-48.
[14] QIN S,et al.A new envelope algorithm of hilbert-huang transform[J].Mechanical Systems and Signal Processing,2006,20(8):1941-1952.
[15] YANG L,et al.A novel envelope model based on convex constrained optimization[J].Digital Signal Processing,2014,29(1):138-146.
[16] PUSTELNIK N,et al.Empirical mode decomposition revisited by multicomponent non-smooth convex optimization[J].Signal Processing,2014,102(102):313-331.
[17] 李军成,等.带参数的四次Hermite插值样条[J].计算机应用,2012,32(7):1868-1870,1874. LI Jun-cheng,et al.Quartic Hermite interpolating splines with parameters[J].Journal of Computer Applications,2012,32(7):1868-1870,1874(in Chinese)
[18] MOODY G B,et al.The impact of the MIT-BIH Arrhythmia Database[J].Engineering in Medicine and Biology Magazine,IEEE,2001,20(3):45-50.
[19] 邵晨曦,等.一种自适应的EMD端点延拓方法[J].电子学报,2007,35(10):1944-1948. SHAO Chen-xi,et al.A self-adaptive method dealing with the end lssue of EMD[J].Acta Electronica Sinica,2007,35(10):1944-1948.(in Chinese)
[20] CHEN Q,et al.A b-spline approach for empirical mode decomposition[J].Advances in Computational Mathematics,2006,24(1):171-195. |