[1] 龙军,袁鑫攀,桂卫华.基于环境感知的可信QoS评价与服务选取策略[J].电子学报,2012,40(6):1133-1140. LONG Jun,YUAN Xin-pan,GUI Wei-hua.A policy for the trusted QoS evaluation and service selection with environment aware[J].Acta Electronica Sinica,2012,40(6):1133-1140.(in Chinese)
[2] 胡堰,彭启民,胡晓惠.一种基于隐语义概率模型的个性化Web服务推荐方法[J].计算机研究与发展,2014,51(8):1781-1793. HU Yan,PENG Qi-min,HU Xiao-hui.A personalized web service recommendation method based on latent semantic probabilistic model[J].Journal of Computer Research and Development,2014,51(8):1781-1793.(in Chinese)
[3] Liu X,Fulia I.Incorporating user,topic,and service related latent factors into web service recommendation[A].Proceedings of the IEEE International Conference on Web Services[C].New Work:IEEE,2015.185-192.
[4] 郭弘毅,刘功申,等.融合社区结构和兴趣聚类的协同过滤推荐算法[J].计算机研究与发展,2016,53(8):1664-1672. GUO Hong-yi,LIU Gong-shen,et al.Collaborative filtering recommendation algorithm combining community structure and interest clusters[J].Journal of Computer Research and Development,2016,53(8):1664-1672.(in Chinese)
[5] Zhang B,Li H,et al.Improving web search results using affinity graph[A].Proceedings of the ACM SIGIR International Conference on Research & Development in Information Retrieval[C].New Work:ACM,2005.504-511.
[6] Tong H,He J,Wen Z,et al.Diversified rankingon large graphs:An optimization viewpoint[A].Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].New Work:ACM,2011.1028-1036.
[7] Li R H,Yu J X.Scalablediversified ranking on large graphs[J].IEEE Transactions on Knowledge & Data Engineering,2013,25(9):2133-2146.
[8] 俞春花,刘学军,李斌,等.基于上下文相似度和社会网络的移动服务推荐方法[J].电子学报,2017,45(6):1530-1536. YU Chun-hua,LIU Xue-jun,LI Bin,et al.Mobile service recommendation based on context similarity and social network[J].Acta Electronica Sinica,2017,45(6):1530-1536.(in Chinese)
[9] Bagci H,Karagoz P.Context-aware location recommendation by using a random walk-based approach[J].Knowledge and Information Systems,2016,47(2):241-260.
[10] Kang G,Liu J,Tang M,et al.AWSR:Active web service recommendation based on usage history[A].Proceedings of the International Conference on Web Services[C].Washington:IEEE Computer Society,2012.186-193.
[11] Maiya A S,Berger-Wolf T Y.Expansion and search in networks[A].Proceedings of the 19th ACM International Conference on Information and Knowledge Management[C].New York:ACM,2010.239-248.
[12] Grouplens.MovieLens[DB/OL].https://grouplens.org/datasets/movielens/.2017-12-31.
[13] Xie Q,Zhao S,Zheng Z,et al.Asymmetriccorrelation regularized matrix factorization for web service recommendation[A].Proceedings of the IEEE International Conference on Web Services[C].New Work:IEEE,2016.204-211.
[14] Aytekin T,Karakaya M Ö.Clustering-based diversity improvement in top-N recommendation[J].Journal of Intelligent Information Systems,2014,42(1):1-18.
[15] Usunier N,Usunier N,Grandvalet Y.Acoverage-based approach to recommendation diversity on similarity graph[A].Proceedings of the 10th ACM Conference on Recommender Systems[C].New York:ACM,2016.15-22. |