基于字符型属性值更新的动态三支决策模型

张清华, 吕功勋, 陈玉洪, 谢秦

电子学报 ›› 2019, Vol. 47 ›› Issue (2) : 344-350.

PDF(931 KB)
PDF(931 KB)
电子学报 ›› 2019, Vol. 47 ›› Issue (2) : 344-350. DOI: 10.3969/j.issn.0372-2112.2019.02.013
学术论文

基于字符型属性值更新的动态三支决策模型

  • 张清华, 吕功勋, 陈玉洪, 谢秦
作者信息 +

A Dynamic Three-Way Decision Model Based on the Updating of Character Attribute Values

  • ZHANG Qing-hua, LÜ Gong-xun, CHEN Yu-hong, XIE Qin
Author information +
文章历史 +

摘要

在现有基于属性值更新的动态三支决策模型上,本文充分考虑字符型属性对象在更新过程中属性知识内涵的不确定性以及对象间优异程度的差异,首先定义字符型属性对象的经验值和经验综合评价值的概念来初步刻画对象,再用修正值来表示对象的知识内涵;通过修正值计算出的基于欧氏距离的最优贴近度作为对象的修正综合评价值;然后,给出了字符型属性对象的动态特征的提取方法,建立了动态三支决策模型.最后,通过大量的仿真实验验证了模型的高效性和适用性.

Abstract

According to the existing dynamic three-way decision model based on the updating of attribute values,in this paper both the uncertainty of attribute knowledge connotation and the difference of excellent degree between objects are fully considered in the process of updating the object.More concretely,both the experience value of character attribute objects and the concept on comprehensive evaluation value of experience are firstly defined to describe the object initially,and the knowledge connotation of the object is expressed by the revised value of character attribute objects.Next,the optimal closeness degree based on the Euclidean distance calculated by the revised value is used as the revised comprehensive evaluation value of the object.Then,the extraction method of dynamic feature on objects with character attributes is presented,and a dynamic three-way decision model is established.Finally,a large number of simulation experiments have been made to validate the efficiency and applicability of the proposed model.

关键词

智能决策 / 三支决策 / 动态更新 / 粒计算 / 特征提取

Key words

intelligent decision making / three-way decisions / dynamic updating / granular computing / feature extraction

引用本文

导出引用
张清华, 吕功勋, 陈玉洪, 谢秦. 基于字符型属性值更新的动态三支决策模型[J]. 电子学报, 2019, 47(2): 344-350. https://doi.org/10.3969/j.issn.0372-2112.2019.02.013
ZHANG Qing-hua, LÜ Gong-xun, CHEN Yu-hong, XIE Qin. A Dynamic Three-Way Decision Model Based on the Updating of Character Attribute Values[J]. Acta Electronica Sinica, 2019, 47(2): 344-350. https://doi.org/10.3969/j.issn.0372-2112.2019.02.013
中图分类号: TP181   

参考文献

[1] Yao Yiyu.Three-way decisions with probabilistic rough sets[J].Information Sciences,2010,180(3):341-353.
[2] Greco S,Matarazzo B,Slowinski R.Parameterized rough set model using rough membership and Bayesian confirmastion measures[J].International Journal of Approximate Reasoning,2008,49(2):285-300.
[3] Yang Xiaoping,Yao Jingtao.Modelling multi-agent three-way decisions with decision-theoretic rough sets[J].Fundamenta Informaticae,2012,115(2-3):157-171.
[4] Yao Yiyu,Deng Xiaofeng.Sequential three-way decisions with probabilistic rough sets[A].Proceeding of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing[C].Banff,Alberta,Canada,2011.120-125.
[5] Hao Chen,Li Jinhai,Min Fan,Eric C.C.Tsang.Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J].Information Sciences,2017,415:213-232.
[6] Zhang Qinghua,Lv Gongxun,Chen Yuhong,Wang Guoyin.A dynamic three-way decision model based on the updating of attribute values[J].Knowledge-Based Systems,2018,142:71-84.
[7] Chen Yufei,Yue Xxiaodong,Fujita Hamido,Fu siyuan.Three-way decision support for diagnosis on focal liver lesions[J].Knowledge-Based Systems,2017,127:85-99.
[8] Li Huaxiong,Zhang Libo,Zhou Xianzhong,Huang Bing.Cost-sensitive sequential three-way decision modeling using a deep neural network[J].International Journal of Approximate Reasoning,2017,85:68-78.
[9] Li Xiaonan,Yi Huangjian,She Yanhong,Sun Bingzhen.Generalized three-way decision models based on subset evaluation[J].International Journal of Approximate Reasoning,2017,83:142-159.
[10] Zhang Qinghua,Yang Jingjing,Yao Longyang.Attribute reduction based on rough approximation set in algebra and information views[J].IEEE Access,2016,4:5399-5407.
[11] Blei D M,Ng A Y,Jordan M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2012,3:993-1002.
[12] Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences.1982,11(5):341-356.
[13] 王国胤.Rough集理论与知识获取[M].西安:西安交通大学出版社,2001. Wang Guoyin.Rough Set Theory and Knowledge Acquisition[M].Xi'an:Xi'an Jiaotong University Press,2001.(in Chinese)
[14] Yao Yiyu.Probabilistic rough set approximations[J].International Jounral of Approximate Reasoning,2008,49:255-271.
[15] Wei C C,Chien C F,Wang M J J.An AHP-based approach to ERP system selection[J].International Journal of Production Economics,2005,96(1):47-62.
[16] Saaty T L.Decision-making with the AHP:Why is the principal eigenvector necessary[J].European Journal of Operational Research,2003,145(1):85-91.
[17] Qian Yuhua,Liang Jiye,Dang Chuangyin,Xu Wei.Knowledge distance in information systems[J].Journal of Systems Science & Systems Engineering,2007,16(4):434-449.
[18] P E Danielsson,Euclidean distance mapping[J].Computer Graphics & Image Processing,1980,14(3):227-248.
[19] Wang Liwei,Zhang Yan,Feng Jufu.On the euclidean distance of images[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2005,27(8):1334-1339.
[20] Jiang Chunmao,Wu Junwei,Li zhicong.Generalized three-way decision models based on subset evaluation[J].International Journal of Approximate Reasoning,2017,83:142-159.
[21] 胡峰,王蕾,周耀.基于三支决策的不平衡数据过采样方法[J].电子学报,2018,46(1):135-144. Hu Feng,Wang Lei,Zhou Yao.An oversampling method for imbalance sata based on three-way decision model[J].Acta Electronica Sinica,2018,46(1):135-144.(in Chinese)
[22] 贾修一,李伟湋,商琳,等.一种自适应求三枝决策中决策阈值的算法[J].电子学报,2011,39(11):2520-2525. Jia Xiuyi,Li Weiwei,Shang Lin,et al.An adaptive learning parameters algorithm in three-way decision-theoretic rough set model[J].Acta Electronica Sinica,2011,39(11):2520-2525.(in Chinese)

基金

国家自然科学基金 (No.61876201,No.61472056); 重庆市研究生科研创新项目 (No.CYS18244)
PDF(931 KB)

1133

Accesses

0

Citation

Detail

段落导航
相关文章

/