[1] Aghabozorgi S,Shirkhorshidi A S,Wah T Y.Time-series clustering-A decade review[J].Information Systems,2015,53:16-38.
[2] Izakian H,Pedrycz W.Agreement-based fuzzy C-means for clustering data with blocks of features[J].Neurocomputing,2014,127:266-280.
[3] Bankó Z N,Abonyi J N.Correlation based dynamic time warping of multivariate time series[J].Expert Systems with Applications,2012,39(17):12814-12823.
[4] Tseng V S,Kao C P.Efficiently mining gene expression data via a novel parameterless clustering method[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB),2005,2(4):355-365.
[5] Górecki T.Using derivatives in a longest common subsequence dissimilarity measure for time series classification[J].Pattern Recognition Letters,2014,45:99-105.
[6] Zhou F,De la Torre F,Hodgins J K.Hierarchical aligned cluster analysis for temporal clustering of human motion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(3):582-596.
[7] Huang X,Ye Y,Xiong L,et al.Time seriesk-means:A new k-means type smooth subspace clustering for time series data[J].Information Sciences,2016,367:1-13.
[8] Cherif A,Cardot H,Boné R.SOM time series clustering and prediction with recurrent neural networks[J].Neurocomputing,2011,74(11):1936-1944.
[9] Shao J,Hahn K,Yang Q,et al.Combining time series similarity with density-based clustering to identify fiber bundles in the human brain[A].Data Mining Workshops (ICDMW),2010 IEEE International Conference on[C].IEEE,2010.747-754.
[10] D Urso P,Maharaj E A.Autocorrelation-based fuzzy clustering of time series[J].Fuzzy Sets and Systems,2009,160(24):3565-3589.
[11] Izakian H,Pedrycz W,Jamal I.Fuzzy clustering of time series data using dynamic time warping distance[J].Engineering Applications of Artificial Intelligence,2015,39:235-244.
[12] Aghabozorgi S,Wah T Y,Amini A,et al.A new approach to present prototypes in clustering of time series[A].The 7th International Conference of Data Mining[C].Las Vegas,USA,2011.214-220.
[13] Aghabozorgi S R,Wah T Y.Using incremental fuzzy clustering to web usage mining[A].International Conference of SOCPAR'09[C].IEEE,2009.653-658.
[14] Mei J P,Wang Y,Chen L,et al.Incrementalfuzzy clustering for document categorization[A].2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)[C].IEEE,2014.1518-1525.
[15] Saha I,Maulik U.Incremental learning based multiobjective fuzzy clustering for categorical data[J].Information Sciences,2014,267:35-57.
[16] Wang Y,Chen L,Mei J P.Incremental fuzzy clustering with multiple medoids for large data[J].IEEE Transactionson Fuzzy Systems,2014,22(6):1557-1568.
[17] Tudu B,Ghosh S,Bag A K,et al.Incremental FCM technique for black tea quality evaluation using an electronic nose[J].Fuzzy Information and Engineering,2015,7(3):275-289.
[18] Crespo F,Weber R.A methodology for dynamic data mining based on fuzzy clustering[J].Fuzzy Sets and Systems,2005,150(2):267-284.
[19] Aghabozorgi S,Saybani M R,Wah T Y.Incremental clustering of time-series by fuzzy clustering[J].Journal of Information Science and Engineering,2012,28(4):671-688.
[20] 王玲,孙华.基于自适应学习的演化聚类算法[J].控制与决策,2016(3):423-428. WANG Ling,SUN Hua.Evolving clustering method based on self-adaptive learning[J].Control and Decision,2016(3):423-428.(in Chinese)
[21] Kwon S H.Cluster validity index for fuzzy clustering[J].Electronics Letters,1998,34(22):2176-2177.
[22] Chen Y,Keogh E,Hu B,et al.The UCR Time Series Classification Archive[EB/OL].http://www.cs.ucr.edu/~eamonn/time_series_datd/,2015-07.
[23] Dua D,Karra Taniskidou E.UCI Machine Learning Repository[EB/OL].http://archive.ics.uci.edu/ml/index.php,2017.
[24] Guo H,Liu X,Song L.Dynamic programming approach for segmentation of multivariate time series[J].Stochastic Environmental Researchand Risk Assessment,2015,29(1):265-273.
[25] Shan D,Xu X,Liang T,et al.Rank-adaptive non-negative matrix factorization[J].Cognitive Computation,2018,10(3):506-515.
[26] Du M,Ding S,Xue Y.A robust density peaks clustering algorithm using fuzzy neighborhood[J].International Journal of Machine Learning and Cybernetics,2018,9(7):1131-1140.
[27] Ding S,Xu X,Fan S,et al.Locally adaptive multiple kernel k-means algorithm based on shared nearest neighbors[J].Soft Computing,2017,22(14):4573-4583. |