[1] Coit D.Genetic algorithms and engineering design[J].Engineering Economist,1998,43(4):379-381.
[2] Eberhart R,Kennedy J.A new optimizer using particle swarm theory[A].MHS'95.Proceedings of the Sixth International Symposium on Micro Machine and Human Science[C].IEEE,2002.39-43.
[3] 王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):96-101. WANG L,PAN J,JIAO L C.The immune algorithm[J].Acta Electronica Sinica,2000,28(7):96-101.(in Chinese)
[4] Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents.[J].IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A,1996,26(1):29.
[5] 李晓磊.一种新型的智能优化方法-人工鱼群算法[D].浙江大学,2003.
[6] 任子晖,王坚,高岳林.马尔科夫链的粒子群优化算法全局收敛性分析[J].控制理论与应用,2011,28(4):462-466. REN Z H,WANG J,GAO Y L.The global convergence analysis of particle swarm optimization based on Markov chain[J].Control Theory & Applications,2011,28(4):462-466.(in Chinese)
[7] 陈侃松,阮玉龙,戴磊,等.区域分割的自适应变异粒子群算法[J].电子学报,2017,45(8):1849-1855. Chen K S,Ruan Y L,Dai L,et al.Regional-segmentation self-adapting variation particle swarm optimization[J].Acta Electronica Sinica,2017,45(8):1849-1855.(in Chinese)
[8] 申元霞,曾传华,王喜凤,等.并行协作骨干粒子群优化算法[J].电子学报,2016,44(7):1643-1648. SHEN Y X,ZENG C H,WANG X F,et al.A parallel-cooperative bare-bone particle swarm optimization algorithm[J].Acta Electronica Sinica,2016,44(7):1643-1648.(in Chinese)
[9] Mirjalili S,Lewis A.The whale optimization algorithm[J].Advances in Engineering Software,2016,95:51-67.
[10] 龙文,蔡绍洪,焦建军,等.求解大规模优化问题的改进鲸鱼优化算法[J].系统工程理论与实践,2017,37(11):2983-2994. LONG W,CAI S H,JIAO J J,et al.Improved whale optimization algorithm for large scale optimization problems[J].Systems Engineering-Theory & Paractice,2017,37(11):2983-2994.(in Chinese)
[11] 郭振洲,王平,马云峰,等.基于自适应权重和柯西变异的鲸鱼优化算法[J].微电子学与计算机,2017,34(9):20-25. GUO Z Z,WANG,MA Y F,et al.Whale optimization algorithm based on adaptive weight and Cauchy mutation[J].Microelectronics & Computer,2017,34(9):20-25.(in Chinese)
[12] 赵志刚,黄树运,王伟倩.基于随机惯性权重的简化粒子群优化算法[J].计算机应用研究,2014,31(2):361-363. ZHAO Z G,HUANG S Y,WANG W Q.Simplified particle swarm optimization algorithm based on stochastic inertia weight[J].Application Research of Computers,2014,31(2):361-363.(in Chinese)
[13] 杜晓昕,张剑飞,郭媛,等.基于柯西-高斯动态消减变异的果蝇优化算法研究[J].计算机工程与科学,2016,38(6):1171-1176. DU X X,ZHANG J F,GU Y,et al.A fruit fly optimization algorithm with Cauchy-Gaussian dynamic reduction mutation[J].Computer Engineering & Science,2016,38(6):1171-1176.(in Chinese)
[14] Kaveh A,Farhoudi N.A new optimization method:Dolphin echolocation[J].Advances in Engineering Software,2013,59(5):53-70.
[15] Ardizzon G,Cavazzini G,Pavesi G.Adaptive acceleration coefficients for a new search diversification strategy in particle swarm optimization algorithms[J].Information Sciences,2015,299(C):337-378.
[16] Shi Y,Eberhart R.Modified particle swarm optimizer[A].Proc of IEEE ICEC Conference,Anchorage[C].IEEE,1998.69-73.
[17] 赵志刚,林玉娇,尹兆远.基于自适应惯性权重的均值粒子群优化算法[J].计算机工程与科学,2016,38(03):501-506. ZHAO Z G,LIN Y J,YIN Z Y.A mean particle swarm optimization algorithm based on adaptive inertia weight[J].Computer Engineering & Science,2016,38(03):501-506.(in Chinese)
[18] Huang X,Zhang J,Zhan Z H.Faster particle swarm optimization with random inertia weight[J].Computer Engineering & Design,2009,30(3):647-432.
[19] 高尚.模拟退火算法中的退火策略研究[J].航空计算技术,2002,32(4):20-22. GAO S.Research on annealing strategy in simulated annealing algorithm[J].Aeronautical Computing Technique,2002,32(4):20-22.(in Chinese)
[20] Dasgupta S,Papadimitriou C H,Vazirani U V.Algorithms[M].China Machine Press,2009.15-18.
[21] Fang W,Sun J,Chen H,et al.A decentralized quantum-inspired particle swarm optimization algorithm with cellular structured population[J].Information Sciences,2016,330(C):19-48.
[22] Mirjalili S,Mirjalili S M,Lewis A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61. |