电子学报 ›› 2019, Vol. 47 ›› Issue (5): 1009-1016.DOI: 10.3969/j.issn.0372-2112.2019.05.005

• 学术论文 • 上一篇    下一篇

基于岭最小截平方的传感器稳健配准方法

田威1, 彭华甫1,2, 黄高明1, 林晓烘1, 王雪宝1   

  1. 1. 海军工程大学电子工程学院, 湖北武汉 430033;
    2. 解放军92773部队, 浙江温州 325807
  • 收稿日期:2017-11-28 修回日期:2018-12-31 出版日期:2019-05-25 发布日期:2019-05-25
  • 通讯作者: 黄高明
  • 作者简介:田威 男,1984年6月生,河北深州人.海军工程大学讲师、博士后.主要研究方向为信息融合、电子对抗.E-mail:tianwei09@tsinghua.org.cn;彭华甫 男,1987年9月生,湖北安陆人,海军工程大学博士研究生.主要研究方向为信息融合、多目标跟踪等;林晓烘 男,1984年5月生,广东普宁人,海军工程大学讲师.主要研究方向为雷达成像、雷达干扰与抗干扰;王雪宝 男,1991年12月生,湖北随州人,海军工程大学博士研究生.主要研究方向为雷达信号处理、辐射源识别.
  • 基金资助:
    国家自然科学基金(No.61601491,No.61803379);中国博士后科学基金(No.2017M613370,No.2018T111129)

Robust Sensor Registration Based on Ridge Least Trimmed Squares

TIAN Wei1, PENG Hua-fu1,2, HUANG Gao-ming1, LIN Xiao-hong1, WANG Xue-bao1   

  1. 1. College of Electronic Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China;
    2. Unit 92773 of the PLA, Wenzhou, Zhejiang 325807, China
  • Received:2017-11-28 Revised:2018-12-31 Online:2019-05-25 Published:2019-05-25

摘要: 传感器配准是多传感器数据融合系统获得性能优势的关键前提.受随机噪声、系统误差、虚警、漏报等因素的干扰,传感器配准常常工作在非理想关联环境中,依赖于理想关联假设的传统配准方法性能衰退严重.另一方面,传统传感器配准方法对目标分布场景敏感,当目标密集分布时,配准问题呈现病态性,估计结果数值不稳定.本文重点研究非理想关联及场景病态性共存时的传感器稳健配准问题,提出了系统误差的岭最小截平方(Ridge Least Trimmed Squares,RLTS)估计方法.该方法结合了岭回归(Ridge Regression,RR)与最小截平方(Least Trimmed Squares,LTS)估计的优点,能够有效应对错误关联及病态性的不良影响.仿真实验证实了所提方法的稳健性能.

关键词: 传感器配准, 系统误差估计, 非理想关联, 病态性, 岭最小截平方

Abstract: Sensor registration is the key precondition of the performance advantages of the multisensor data fusion system.In the presence of random errors,sensor biases,false alarms and missed detections,sensor registration usually works in a nonideal association envrionment.Traditional registration approches relying on the ideal association condition degrade seriously.On the other hand,traditional registration methods are sensitive to the target distribution.When targets are densely distributed,the registration problem is ill-conditioned and the estimation encounters the numerical instability phenomena.Focusing on sensor registration in the context of nonideal association and ill-condition,this paper presents the robust registration approach based on ridge least trimmed squares (RLTS).The proposed approach combines the advantages of the ridge regression (RR) and the least trimmed squares (LTS) estimation.The RLTS can deal with nonideal association and ill-condition simultaneously.Simulation results verify the robust performance of the RLTS method.

Key words: sensor registration, system bias estimation, nonideal association, ill-condition, ridge least trimmed squares

中图分类号: