[1] Warner S L.Randomized response:A survey technique for eliminating evasive answer bias[J].Journal of the American Statistical Association,1965,60(309):63-69.
[2] 罗永龙,黄刘生,荆巍巍,等.一个保护私有信息的布尔关联规则挖掘算法[J].电子学报,2005,33(5):133-136. Luo Y L,Huang L S,Jing W W,et al.An algorithm for privacy-preserving boolean association rule mining[J].Acta Electronica Sinica,2005,33(5):133-136.(in Chinese)
[3] Hsieh S H,Lee S M,Tu S H.Randomized response techniques for a multi-level attribute using a single sensitive question[J].Statistical Papers,2018,59(1):291-306.
[4] Tian X,Taylor J.Selective inference with a randomized response[J].The Annals of Statistics,2018,46(2):679-710.
[5] 叶青青,孟小峰,朱敏杰,等.本地化差分隐私研究综述[J].软件学报,2018,29(7):159-183. Ye Q Q,Meng X F,Zhu M J,et al.Survey on local differential privacy[J].Journal of Software,2018,29(7):159-183.(in Chinese)
[6] Lin B C,Wu S H,Tsou Y T,et al.PPDCA:Privacy-preserving crowdsensing data collection and analysis with randomized response[A].Proceedings of IEEE Wireless Communications and Networking Conference (WCNC)[C].Barcelona,Spain:IEEE,2018.1-6.
[7] Aoki S,Iwai M,Sezaki K.Privacy-aware community sensing using randomized response[A].Proceedings of the 37th Annual Computer Software and Applications Conference Workshops[C].Japan:IEEE,2013.127-132.
[8] Xiao X K,Tao Y F,Chen M H.Optimal random perturbation at multiple privacy levels[J].Proceedings of the VLDB Endowment,2009,2(1):814-825.
[9] Kairouz P,Oh S,Viswanath P.Extremal mechanisms for local differential privacy[A].Advances in Neural Information Processing Systems (NIPS)[C].Red Hook,NY,USA:Curran Associates,Inc,2014.2879-2887.
[10] Kairouz P,Bonawitz K,Ramage D.Discrete distribution estimation under local privacy[A].Proceedings of the 33rd International Conference on Machine Learning[C].New York,NY,USA:2016.2436-2444.
[11] Dwork C.Differential privacy[A].Proceedings of the 33rd International Colloquium on Automata,Languages and Programming (ICALP)[C].Venice,Italy:Springer,2006.1-12.
[12] Wang W N,Ying L,Zhang J S.A game-theoretic approach to quality control for collecting privacy-preserving data[A].Proceedings of the 53rd Annual Allerton Conference on Communication,Control,and Computing[C].Allerton House,UIUC,lllinois,USA:IEEE,2016.474-479.
[13] Kim J W,Kim D,Jang B.Application of local differential privacy to collection of indoor positioning data[J].IEEE Access,2018,6:4276-4286.
[14] Holohan N,Leith D J,Mason O.Optimal differentially private mechanisms for randomised response[J].IEEE Transactions on Information Forensics and Security,2017,12(11):2726-2735.
[15] Ye M,Barg A.Optimal schemes for discrete distribution estimation under local differential privacy[J].IEEE Transactions on Information Theory,2018,64(8):5662-5676.
[16] Xiao X,Tao Y.Personalized privacy preservation[A].Proceedings of the ACM SIGMOD International Conference on Management of Data[C].Chicago,IL,USA:ACM,2006.229-240.
[17] Braun C,Chatzikokolakis K,Palamidessi C.Quantitative notions of leakage for one-try attacks[J].Electronic Notes in Theoretical Computer Science,2009,249:75-91. |