[1] 杨张博,王新雷.大数据交易中的数据所有权研究[J].情报理论与实践,2018,41(6):52.
[2] 宋梅青.融合数据分析服务的大数据交易平台研究[J].图书情报知识,2017(2):13-19.
[3] 郭艺,叶剑,张鹏.基于偏差约减的大数据交易模型分析与修复方法[J].电子学报,2018,46(7):1754-1761. GUO Yi,YE Jian,ZHANG Peng.Analysis and repair of big data transaction model based on deviation reduction[J].Acta Electronica Sinica,2018,46(7):1754-1761.(in Chinese)
[4] BAKLIZKY M,FANTINATO M,THOM L H,et al.Business process point analysis:survey experiments[J].Business Process Management Journal,2017,23(2):399-424.
[5] AALST W M P V D,MEDEIROS A K A D,WEIJTERS A J M M.Genetic process mining[J].Lecture Notes in Computer Science,2005,14(2):76-83.
[6] Van der AALST Will.Process Mining:Data Science in Action[M].Berlin:Springer,2016.
[7] 杜玉越,朱鸿儒,王路,等.一种基于逻辑Petri网的过程挖掘方法[J].电子学报,2016,44(11):2742-2751. DU Yu-yue,ZHU Hong-ru,WANG Lu,et al.A method of process mining based on logic petri nets[J].Acta Electronica Sinica,2016,44(11):2742-2751.(in Chinese)
[8] KALENKOVA A A,van der AALST W,LOMAZOVA I A,et al.Process mining using BPMN:relating event logs and process models[A].Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems[C].US:ACM,2016.123-123.
[9] ZHANG X,DU Y,QI L,et al.Repairing process models containing choice structures via logic petri nets[J].IEEE Access,2018,PP(99):DOI:10.1109/ACCESS.2018.2870727.
[10] Van der AALST W.Decomposing petri nets for process mining:A generic approach[J].Distributed & Parallel Databases,2013,31(4):471-507.
[11] WYNN M T,et al.Impact-driven process model repair[J].ACM Transactions on Software Engineering & Methodology,2016,25(4):28-80.
[12] FAHLAND D,AALST W.Model repair-aligning process models to reality[J].Information Systems,2015,47(1):220-243.
[13] AALST W,ADRIANSYAH A,MEDEIROS A K A D,et al.Process mining manifesto[A].International Conference on Business Process Management[C].Berlin,Heidelberg:Springer,2011.169-194.
[14] 孙雪,李昆仑,韩蕾,等.基于特征项分布的信息熵及特征动态加权概念漂移检测模型[J].电子学报,2015,43(7):1356-1361. SUN Xue,LI Kun-lun,HAN Lei,et al.Construction of the concept drift detection model based on the information entropy of feature distribution and dynamic weighting algorithm[J].Acta Electronica Sinica,2015,43(7):1356-1361.(in Chinese)
[15] BOSE R P J C,AALST W M P V D,?LIOBAIT I,et al.Handling concept drift in process mining[J].Lecture Notes in Computer Science,2011,4(1):391-405.
[16] BAHNINI A,PLISSONNIER D,KOSKAS F,et al.Online discovery of declarative process models from event streams[J].IEEE Transactions on Services Computing,2015,8(6):833-846.
[17] MAARADJI A,DUMAS M,ROSA M L,et al.Detecting sudden and gradual drifts in business processes from execution traces[J].IEEE Transactions on Knowledge & Data Engineering,2017,29(10):2140-2154.
[18] BOSE R P,WM V D A,ZLIOBAITE I,et al.Dealing with concept drifts in process mining[J].IEEE Transactions on Neural Networks & Learning Systems,2014,25(1):154.
[19] MANOJ Kumar M V,LIKEWIN Thomas,ANNAPPA B.Capturing the sudden concept drift in process mining[A].Algorithms & Theories for the Analysis of Event Data (ATAED'15)[C].Brussels,Belgium,2015.132.
[20] 天元大数据交易平台[DB/OL].https://www.tdata.cn/.2018-10-01.
[21] ROZINAT A,AALST W M P V D.Conformance checking of processes based on monitoring real behavior[J].Information Systems,2008,33(1):64-95.
[22] MANNHARDT F,LEONI M,REIJERS H A,et al.Balanced multi-perspective checking of process conformance[J].Computing,2016,98(4):407-437.
[23] MUNOZ-GAMA J,CARMONA J,AALST W M P V D.Conformance checking in the large:partitioning and topology[A].International Conference on Business Process Management[C].Berlin:Springer-Verlag,2013.130-145.
[24] AALST W V D,ADRIANSYAH A,DONGEN B V.Replaying history on process models for conformance checking and performance analysis[J].Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery,2012,2(2):182-192. |