[1] Jo o Carreira,Andrew Zisserman.Quo Vadis.Action recognition? a new model and the kinetics dataset[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington,DC,USA:IEEE,2017.4724-4733.
[2] 张友梅,常发亮,刘洪彬.基于3D人体骨架的动作识别[J].电子学报,2017,45(4):906-911. ZHANG You-mei,CHAN Fa-liang,LIU Hong-bin.Action recognition based on 3D skeleton[J].Acta Electronica Sinica,2017,45(4):906-911.(in Chinese)
[3] Christoph Feichtenhofer,Axel Pinz,RichardWildes,Andrew Zisserman.What have we learned from deep representations for action recognition?[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington,DC,USA:IEEE,2018.7844-7853.
[4] Du Tran,et al.A closer look at spatiotemporal convolutions for action recognition[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington,DC,USA:IEEE,2018.6450-6459.
[5] Chen B,Ting J A,De Freitas N.Deep learning of invariant spatio-temporal features from video[A].Conference and Workshop on Neural Information Processing Systems[C].Cambridge,Massachusetts,USA:MIT Press,2010.46-57.
[6] Jurgen Schmidhuber.Deep learning in neural networks:An overview[J].Neural Networks,2015,61:85-117.
[7] Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,50:313-325.
[8] Shaoqing Ren,Kaiming He,Ross B.Girshick,Jian Sun.Faster R-CNN:Towards real-time object detection with region proposal networks[A].Conference and Workshop on Neural Information Processing Systems[C].Cambridge,Massachusetts,USA:MIT Press,2015.91-99.
[9] 李倩玉,蒋建国,齐美彬.基于改进深层网络的人脸识别算法[J].电子学报,2017,45(3):619-625. LI Qian-yu,JIANG Jian-guo,QI Mei-bin.Face recognition algorithm based on improved deep networks[J].Acta Electronica Sinica,2017,45(3):619-625.(in Chinese)
[10] 曾霖,卓汉逵,李磊.基于智能规划的工作流任务识别算法[J].2018,46(4):871-877. ZENG Lin,ZHUO Han-kui,LI Lei.Workflowtask recognition based on intelligent planning[J].Acta Electronica Sinica,2016,44(8):2025-2032.(in Chinese)
[11] 高洁,卓汉逵,刘亚松,李磊.基于众包模式的开放式规划问题研究[J].电子学报,2016,44(8):2025-2032. GAO Jie,ZHUO Han-kui,LIU Ya-seng,LI Lei.Research on crowdsourced open planning[J].Acta Electronica Sinica,2016,44(8):2025-2032.(in Chinese)
[12] Fikes,R.E.,Nilsson,N.I.STRIPS:A new approach to the application of theorem proving to problem solving[J].Artificial Intelligence,1972,2:189-208.
[13] Hankz Hankui Zhuo,Qiang Yang,Subbarao Kambhampati.Action-model based multi-agent plan recognition[A].Conference and Workshop on Neural Information Processing Systems[C].Cambridge,Massachusetts,USA:MIT Press,2012.377-385.
[14] Hankz Hankui Zhuo,Tuan Nguyen and Subbarao Kambhampati.Refiningincomplete planning domain models through plan traces[A].International Joint Conferences on Artificial Intelligence[C].San Jose,California,USA:Margan Kaufmann,2013.2451-2457.
[15] Thomas B.Moeslund,et al.A survey of advances in vision-based human motion capture and analysis[J].Computer Vision and Image Understanding,2006,104(2):90-126.
[16] E.Charniak and R.P.Goldman.A Bayesian model of plan recognition[J].Artificial Intelligence,1993,64:53-79.
[17] Tao Gu,et al.SICAR:An emerging patterns based approach to sequential,interleaved and concurrent activity r.ecognition[A].International Conference on Pervasive Computing and Communications[C].Washington,DC,USA:IEEE Computer Society,2009.142-151.
[18] Kautz H,Allen J F.Generalized plan recognition[A].AAAI Conference on Artificial Intelligence[C].Palo Alto,California,USA:AAAI,1986.167-178.
[19] Ji S,Xu W,Yang M,et al.3D convolutional neural networks for human action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):221-231.
[20] Simonyan K,Zisserman A.Two-stream convolutional networks for action recognition in videos[A].Conference and Workshop on Neural Information Processing System[C].Cambridge,Massachusetts,USA:MIT Press,2014.568-576.
[21] Bengio Y,Delaalleau O.On the expressive power of deep architectures[A].International Conference on Algorithmic Learning Theory[C].Berlin,GER:Springer,2011.18-36.
[22] Taylor G W,Hinton G E.Factored conditional restricted Boltzmann machines for modeling motion style[A].International Conference on Machine Learning[C].San Jose,California,USA:ACM,2009.1025-1032.
[23] Shuai Zheng,et al.Conditional random fields as recurrent neural networks[A].IEEE International Conference on Computer Vision[C].Washington,DC,USA:IEEE,2015.1529-1537.
[24] Jamil Ahmad,Khan Muhammad,Muhammad Sajjad,Sung Wook Baik.Action recognition in video sequences using deep bi-directional LSTM with CNN features[J].IEEE Access,2018,6(1):1155-1166.
[25] A.Krizhevsky,I.Sutskever,G.Hinton.ImageNet classification with deep convolutional neural networks[A].Conference and Workshop on Neural Information Processing Systems[C].Cambridge,Massachusetts,USA:MIT Press,2012.1273-1291.
[26] LeCun Y,et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation,1989,1(4):541-551.
[27] Ghallab M,Aeronautiques C,Isi C K,et al.PDDL-The Planning Domain Definition Language[M].Boston:Auerbach Publications,1998.
[28] Henry A.Kautz,Bart Selman.Pushingthe envelope:planning,propositional logic and stochastic search[A].AAAI Conference on Artificial Intelligence[C].Palo Alto,California,USA:AAAI,1996.1194-1201.
[29] Javier Segovia Aguas,Sergio Jiménez Celorrio,Anders Jonsson.Hierarchical finite state controllers for generalized planning[A].International Joint Conference on Artificial Intelligence[C].San Jose,California,USA:Margan Kaufmann,2016.3235-3241.
[30] Chao Dong,Chen Change Loy,Kaiming He,Xiaoou Tang.Imagesuper-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(2):295-307.
[31] 王泽宇,吴艳霞,张国印,布树辉.基于空间结构化推理深度融合网络的RGB-D场景解析[J].电子学报,2018,46(5):1253-1258. WANG Ze-yu,WU Yan-xia,ZHANG Guo-yin,BU Shu-hui.RGB-D scene parsing based on spatial structured inference deep fusion networks[J].Acta Electronica Sinica,2018,46(5):1253-1258.(in Chinese)
[32] Xinhua Liu,Yao Zou,Chengjuan Xie,Xiaolin Ma.Bidirectional face aging synthesis based on improved deep convolutional generative adversarial networks[J].Information,2019,10(2):69-84.
[33] Joe Yue-Hei Ng,et al.Beyond short snippets:Deep networks for video classification[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington,DC,USA:IEEE,2015.4694-4702.
[34] P.Shih,C.Liu.Face detection using discriminating feature analysis and support vector machine[J].Pattern Recognition,2006,39(11):260-276. |