[1] 杜栋栋,任星彰,陈坤,等.一种基于One-Class SVM和GP安全事件关联规则生成方法研究[J].电子学报,2018,46(8):1793-1803. Du Dong-dong,Ren Xing-zhang,Chen Kun,et al.A security event correlation rule generation method research based on one-class SVM and genetic programming[J].Acta Electronica Sinica,2018,46(8):1793-1803.(in Chinese)
[2] Burges C J C.Atutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):955-974.
[3] Tax D M J,Duin R P W.Support vector data description[J].Machine Learning,2004,54(1):45-66.
[4] Bo L F,Wang L,Jiao C.Training hard-margin support vector machines using greedy stagewise algorithm[J].IEEE Trans.Neural Networks,2008,19(8):1446-1455.
[5] Drineas P,Mahoney M W.On the Nystrøm method for approximating a gram matrix for improved kernel-based learning[J].Journal of Machine Learning Research,2005,6:2153-2175.
[6] Takahashi N,Nishi T.Rigorous proof of termination o f SMO algorithm for support vector machines[J].IEEE Trans.Neural Network,2005,16(3):774-776.
[7] 张景祥,王士同.基于共同决策方向矢量的多源迁移及其快速学习方法[J].电子学报,2015,43(7):1349-1355. Zhang Jing-xiang,Wang Shi-tong.Common-decision-vector based multiple source transfer learning classification and its fast learning method[J].Acta Electronica Sinica,2015,43(7):1349-1355.(in Chinese)
[8] Ding S,Nie X,Qiao H,et al.A fast algorithm of convex hull vertices selection for online classification[J].IEEE Trans.on Neural Networks and Learning Systems,2018,29(4):792-806.
[9] Gu X,Chung F L,Wang S.Fastconvex-hull vector machine for training on large-scale ncRNA data classification tasks[J].Knowledge-Based Systems,2018,151(6):149-164.
[10] 顾晓清,倪彤光,姜志彬,等.面向大规模噪声数据的软性核凸包支持向量机[J].电子学报,2018,46(2):347-357. Gu Xiao-qing,Ni Tong-guang,Jiang Zhi-bin,et al.Soft kernel convex hull support vector machine for large scale noisy datasets[J].Acta Electronica Sinica,2018,46(2):347-357.(in Chinese)
[11] Xua J,Jiang Y X,Zeng C Q,et al.Node anomaly detection for homogeneous distributed environments[J].Expert Systems with Applications,2015,42(20):7012-7025.
[12] Forghani Y,Yazdi H S,Effati S.An extension to fuzzy support vector data description (FSVDD)[J].Pattern Analysis & Applications,2012,15(3):237-247.
[13] Theodoridis S,Mavroforakis M.Reducedconvex hulls:a geometric approach to support vector machines[J].Signal Processing Magazine IEEE,2007,24(3):119-122.
[14] Almasi O N,Rouhani M.Fast and de-noise support vector machine training method based on fuzzy clustering method for large real world datasets[J].Turkish Journal of Electrical Engineering & Computer Sciences,2016,24(1):219-233.
[15] Bouguettaya A,Yu Q,Liu X.Efficient agglomerative hierarchical clustering[J].Expert Systems with Applications,2015,42(5):2785-2797.
[16] Székely G J,Rizzo M L.Hierarchical clustering via joint between-within distances:extending ward's minimum variance method[J].Journal of Classification.2005,22(2):151-183.
[17] Wu M,Ye J.Asmall sphere and large margin approach for novelty detection using training data with outliers[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2009,31(11):2088-2092.
[18] Batuwita R,Palade V.FSVM-CIL:fuzzy support vector machines for class imbalance learning[J].IEEE Trans.Fuzzy Systems,2010,18(3):558-571.
[19] Le T,Phung D,Nguyen K.Fastone-class support vector machine for novelty detection[A].Pacific-Asia Conference on Knowledge Discovery and Data Mining[C].Vietnam:Springer International Publishing,2015.189-200.
[20] Bache K,Lichman M.UCI database[J/OL].https://archive.ics.uci.edu/ml/datasets.html,2018-02-28.
[21] Huang X L,Shi L,Suykens J A K.Support vector machine classifier with pinball loss[J].IEEE Trans.Pattern Analysis and Machine Intelligence,2014,36(5):984-997.
[22] Luukka P,Lampinen J.Differential evolution classifier in noisy settings and with interacting variables[J].Applied Soft Computing Journal,2011,11(1):891-899.
[23] Ni T G,Gu X Q,Wang J,et al.Scalable transfer support vector machine with group probabilities[J].Neurocomputing,2018,273(17):570-582. |