电子学报 ›› 2019, Vol. 47 ›› Issue (9): 1809-1818.DOI: 10.3969/j.issn.0372-2112.2019.09.001

所属专题: 粒子群优化算法

• 学术论文 •    下一篇

混合均值中心反向学习粒子群优化算法

孙辉1,2,3, 邓志诚1, 赵嘉1,2,3, 王晖1,2,3, 谢海华1   

  1. 1. 南昌工程学院信息工程学院, 江西南昌 330099;
    2. 鄱阳湖流域水工程安全与资源高效利用国家地方联合 工程实验室, 江西南昌 330099;
    3. 江西省水信息协同感知与智能处理重点实验室, 江西南昌 330099
  • 收稿日期:2019-01-06 修回日期:2019-03-15 出版日期:2019-09-25 发布日期:2019-09-25
  • 作者简介:孙辉 男,1959年3月生,江西九江人.博士、二级教授.主要研究方向为智能计算、Rough集和粒计算、变分不等原理与变分不等式.E-mail:sun_hui2006@163.com;邓志诚 男,1995年2月生,江西丰城人.硕士研究生.主要研究方向为智能计算;赵嘉 男,1981年9月生,安徽桐城人.教授、硕士生导师、中国电子学会高级会员.主要研究方向为智能计算与大数据挖掘;王晖 男,1982年8月生,湖北红安人.博士、教授、硕士生导师.主要研究方向为智能计算与并行计算;谢海华 男,1994年2月生,江西萍乡人.硕士研究生.主要研究方向为智能计算.
  • 基金资助:
    国家自然科学基金(No.61663029,No.51669014,No.61663028);江西省杰出青年基金(No.2018ACB21029);江西省杰出青年人才资助计划(No.20171BCB23075);江西省自然科学基金(No.20171BAB202035);江西省教育厅落地计划基金(No.KJLD13096);江西省2018年度研究生创新专项资金项目(No.YC2018-S422)

Hybrid Mean Center Opposition-Based Learning Particle Swarm Optimization

SUN Hui1,2,3, DENG Zhi-cheng1, ZHAO Jia1,2,3, WANG Hui1,2,3, XIE Hai-hua1   

  1. 1. School of Information Engineering, Nanchang Institute of Technology, Nanchang, Jiangxi 330099, China;
    2. National-Local Joint Engineering Laboratory of Water Engineering Safety and Effective Utilization of Resources in Poyang Lake Area, Nanchang, Jiangxi 330099, China;
    3. Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, Nanchang, Jiangxi 330099, China
  • Received:2019-01-06 Revised:2019-03-15 Online:2019-09-25 Published:2019-09-25

摘要: 为平衡粒子群算法勘探与开发能力,本文提出混合均值中心反向学习粒子群优化算法.算法将所有粒子和部分优质粒子分别构造的均值中心进行贪心选择,得出的混合均值中心将对粒子所在区域进行精细搜索.同时对混合均值中心进行反向学习,使粒子能探索更多新区域.将本文算法与最新改进的粒子群算法、人工蜂群算法和差分算法在多种测试函数集上进行比较,实验结果验证了混合均值中心反向学习策略的有效性,算法的综合优化性能更强.

关键词: 全局寻优, 混合均值中心, 反向学习, 粒子群优化算法

Abstract: In order to balance the exploration and exploitation of particle swarm optimization,this paper proposes a hybrid mean center opposition-based learning particle swarm optimization.The algorithm performs greedy selection on the mean center of all particles and some high-quality particles respectively,and the obtained hybrid mean center will search the region in detail where the particles are located.At the same time,the hybrid mean center is using opposition-based learning,so that the particles can explore more new regions.The proposed algorithm are compared with the latest improved particle swarm optimization,artificial bee colony algorithm and difference algorithm in various test function sets,and the results verify the effectiveness of the hybrid mean center opposition-based learning and the overall optimization performance of the algorithm is stronger.

Key words: global optimization, hybrid mean center, opposition-based learning, particle swarm optimization

中图分类号: