[1] KENNEDY J,EBERHART R.Particle swarm optimization[A].Proceedings of International Conference on Neural Networks[C].Piscataway:IEEE,1995.1942-1948.
[2] 李奕,吴小俊.粒子群进化学习自适应双通道脉冲耦合神经网络图像融合方法研究[J].电子学报,2014,42(2):217-222. LI Yi,WU Xiao-Jun.A novel image fusion method using self-adaptive dual-channel pulse coupled neural networks based on PSO evolutionary learning[J].Acta Electronica Sinica,2014,42(2):217-222.(in Chinese)
[3] 俞海珍,汪鹏君,张会红,万凯.基于三值多样性粒子群算法的MPRM电路综合优化[J].电子学报,2017,45(7):1601-1607. YU Hai-zhen,WANG Peng-jun,ZHAO Hui-hong,et al.Optimization of MPRM circuits based on ternary diversity particle swarm optimization[J].Acta Electronica Sinica,2017,45(7):1601-1607.(in Chinese)
[4] ZHAO J,LV L,WANG H,et al.Particle swarm optimization based on vector Gaussian learning[J].Ksii Transactions on Internet and Information Systems,2017,11(4):2038-2057.
[5] HAKLl H,UGUZ H.A novel particle swarm optimization algorithm with Levy flight[J].Applied Soft Computing,2014,23:333-345.
[6] YAN B,ZHAO Z,ZHOU Y,et al.A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters[J].Computer Physics Communications,2017,219:79-86.
[7] CHEN K,ZHOU F,YIN L,et al.A hybrid particle swarm optimizer with sine cosine acceleration coefficients[J].Information Sciences,2018,422:218-241.
[8] 朱蓉,靳雁霞,范卫华.融合优质粒子分布的粒子群优化算法[J].小型微型计算机系统,2015,36(3):576-580. ZHU Rong,JIN Yan-xia,FAN Wei-hua.Particle swarm optimization algorithm combination with the distribution of superior quality particles[J].Journal of Chinese Computer Systems,2015,36(3):576-580.(in Chinese)
[9] WANG H,WU Z,RAHNAMAYAN S,et al.Enhancing particle swarm optimization using generalized opposition-based learning[J].Information Sciences,2011,181(20):4699-4714.
[10] WANG H,WU Z,LIU Y,et al.Space transformation search:a new evolutionary technique[A].Proceedings of Word Summit Genetic Evolutionary Computation[C].New York:ACM,2009.537-544.
[11] CHEN Q,LIU B,ZHANG Q,et al.Problem Definitions and Evaluation Criteria for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive Numerical Optimization[R].Zhengzhou:Zhengzhou University,2014.
[12] JENSI R,JIJI G W.An enhanced particle swarm optimization with levy flight for global optimization[J].Applied Soft Computing,2016,43:248-261.
[13] OUYANG H,GAO L,LI S,et al.Improved global-best-guided particle swarm optimization with learning operation for global optimization problems[J].Applied Soft Computing,2017,52:987-1008.
[14] 周凌云,丁立新,彭虎,等.一种邻域重心反向学习的粒子群优化算法[J].电子学报,2017,45(11):2815-2824. ZHOU Ling-yun,DING Li-xin,PENG Hu,et al.Neighborhood centroid opposition-based particle swarm optimization[J].Acta Electronica Sinica,2017,45(11):2815-2824.(in Chinese)
[15] LIANG J J,QU B Y,SUGANTHAN P N,et al.Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session on Real-Parameter Optimization[R].Zhengzhou:Zhengzhou University,2013.
[16] 孙辉,谢海华,赵嘉.正弦选择概率模型的全局最优引导人工蜂群算法[J].南昌工程学院学报,2018,37(6):84-90. SUN Hui,XIE Hia-hua,ZHAO Jia.Global optical guided artificial bee colony algorithm based on sinusoidal selection probability model[J].Journal of Nanchang Institute of Technology,2018,37(6):84-90.(in Chinese)
[17] CUI L,LI G,LIN Q,et al.A novel artificial bee colony algorithm with depth-first search framework and elite-guided search equation[J].Information Sciences,2016,367:1012-1044.
[18] AYDILEK B.A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems[J].Applied Soft Computing,2018,66:232-249 |