[1] 孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. Meng Xiaofeng,Ci Xiang.Big data management:concepts,techniques and challenges[J].Journal of Computer Research and Development,2013,50(1):146-169.(in Chinese)
[2] 曹媛.到2021年全球智能手机流量预计将翻番[J].计算机与网络,2017,(12):16-16.
[3] Sankar S,Shaw M,Vaid K,et al.Datacenter scale evaluation of the impact of temperature on hard disk drive failures[J].Acm Transactions on Storage,2013,9(2):1-24.
[4] Corbett P,English B,Goel A,et al.Row-diagonal parity fordouble disk failure correction[A].Usenix Conference on File & Storage Technologies[C].California:Publishing USENIX Association,2004.1-14.
[5] Ofpaper P.AONT-RS:Blending security and performance in dispersed storage systems[A].Usenix Conference on File & Storage Technologies[C].California:Publishing USENIX Association,2011.191-202.
[6] Huang C,Simitci H,Xu Y,et al.Erasure coding in windows azure storage[A].Usenix Annual Technical Conference[C].Massachusetts Publishing USENIX Association,2012.15-26.
[7] Rhea S,Wells C,Eaton P,et al.Maintenance-free global data storage[J].IEEE Internet Computing,2001,5(5):40-49.
[8] 李静.第41次《中国互联网络发展状况统计报告》发布[J].中国广播,2018,(03):96-96.
[9] Cisco.Mobile Visual Network Index (VNI)[J/OL].https://www.cisco.com/c/zh_cn/solutions/service-provider/visual-networking-index-vni.
[10] Patterson D A.A case for redundant arrays of inexpensive disks (RAID)[A].Proc ACM SIGMOD Conference[C].Illinois:Publishing ACM,1988.109-116.
[11] Chen P M,Lee E K,Gibson G A,et al.RAID:high-performance,reliable secondary storage[J].ACM Computing Surveys,1994,26(2):145-185.
[12] Yu X,Gum B,Chen Y,et al.Trading capacity for performance in a disk array[A].Conference on Symposium on Operating System Design & Implementation[C].California:Publishing USENIX Association,2000.243-258.
[13] S Kim D.On-line Reorganization of data in scalable continuous media servers[A].International Conference on Database and Expert Systems Applications[C].Zurich:Publishing IEEE Computer Society,1996.751-768.
[14] 魏学才,宫庆媛,沈佳杰,周扬帆,王新.适应冷热数据存储的多编码架构的设计与实证[J].计算机应用与软件,2017,34(2):35-41.
[15] 田磊,冯丹,岳银亮,等.磁盘存储系统节能技术研究综述[J].计算机科学,2010,37(9):1-5. TIAN Lei,FEND Dan,YUE Yin-liang,WU Su-zhen,MAO Bo.Survey on power-saving technologies for disk-based storage systems[J].Computer Science,2010,37(9):1-5.(in Chinese)
[16] 杨丽鸿.浅析计算机磁盘存储系统节能技术[J].科学技术创新,2018,(03):88-89.
[17] 景蛴娴,李易.基于海量数据的分布式存储与共享方案[J].科技创新导报,2018,15(24):125-127.
[18] 王意洁,许方亮,裴晓强.分布式存储中的纠删码容错技术研究[J].计算机学报,2017,(01):236-255.
[19] 赵瑞峰,汤晓安,干哲.基于集群技术的海量数据存储技术研究[J].微计算机信息,2010,26(16):196-198.
[20] 张峰豪.纠删码集群存储的数据访问优化技术研究[D].湖北:华中科技大学,2013.
[21] 黄建忠,梁先海,曹强,等.面向纠删码存储集群的弹性I/O调度机制研究[J].计算机研究与发展,2014,(S1):195-203. Huang Jianzhong,Liang Xianhai,Cao Qiang,et al.Research on elastic I/O scheduling for erasure-coded storage clusters[J].Journal of Computer Research and Development,2014,(S1):195-203.(in Chinese)
[22] 罗象宏,舒继武.存储系统中的纠删码研究综述[J].计算机研究与发展,2012,49(1):1-11. Luo Xianghong,Shu Jiwu.Summary of research for erasure code in storage system[J].Journal of Computer Research and Development,2012,49(1):1-11.(in Chinese)
[23] Gonzalez J L,Cortes T.Increasing the capacity of RAID5 by online gradual assimilation[A].International Workshop on Storage Network Architecture and Parallel I/Os[C].Antibes:Publishing ACM,2004.17-24.
[24] Brown N.OnlineRAID-5 resizing.drivers/md/RAID5.c in the source code of Linux Kernel 2.6.32.9[J/OL].http://www.kernel.org/.Feb 2010.
[25] Method of increasing the storage capacity of a level fiveRAID disk array by adding,in a single step,a new parity block and N-1 new data blocks which respectively reside in a new columns,where N is at least two document type and number[P].United States Patent:6000010, 1999-12-07.
[26] Hetzler S R.data storage array scaling method and system with minimal data movement[P].United States Patent:8239622 B2,2012-08-07.
[27] Franklin C R,Wong J T.Expansion of RAID subsystems using spare with immediate access to new space[P].United States Patent:7111117B2,2006-09-19.
[28] Zhang G,Shu J,Xue W,et al.SLAS:An efficient approach to scaling round-robin striped volumes[J].ACM Transactions on Storage,2007,3(1):1-39.
[29] Zhang G,Zheng W,Shu J.ALV:A new data redistribution approach toRAID-5 scaling[J].IEEE Transactions on Computers,2010,59(3):345-357.
[30] Wilkes J,Golding R,Staelin C,et al.The HP AutoRAID hierarchical storage system[A].Fifteenth ACM Symposium on Operating Systems Principles[C].Colorado:Publishing ACM,1995.96-108.
[31] Goel A,Shahabi C,Yao S Y D,et al.SCADDAR:An efficient randomized technique to reorganize continuous media blocks[A].International Conference on Data Engineering[C].California:Publishing IEEE Computer Society,2002.473-482.
[32] Wu C,He X.GSR:A global stripe-based redistribution approach to accelerate RAID-5 scaling[A].International Conference on Parallel Processing[C].Pennsylvania:Publishing IEEE Computer Society,2012.460-469.
[33] Miranda A,Cortes T.CRAID:online RAID upgrades using dynamic hot data reorganization[A].Usenix Conference on File and Storage Technologies[C].California:Publishing USENIX Association,2014.133-146.
[34] Zheng W,Zhang G.FastScale:accelerateRAID scaling by minimizing data migration[A].Usenix Conference on File and Storage Technologies[C].California:Publishing USENIX Association,2011.149-161.
[35] Zhang G,Wang J,Li K,et al.Redistribute data to regain load balance during RAID-4 scaling[J].IEEE Transactions on Parallel & Distributed Systems,2015,26(1):219-229.
[36] Daci G,Ndreu M.Increasing RAID-5 performance improving the scaling approaches[A].Computer and Information Technology[C].California:Publishing IEEE,2013.
[37] Zhang G,Zheng W,Li K.Rethinking RAID-5 data layout for better scalability[J].IEEE Transactions on Computers,2014,63(11):2816-2828.
[38] Mao Y,Wan J,Zhu Y,et al.A new parity-based migration method to expand RAID-5[J].IEEE Transactions on Parallel & Distributed Systems,2014,25(8):1945-1954.
[39] Liang J,Xu Y,Li Y,et al.ISM-An intra-stripe data migration approach for RAID-5 scaling[A].International Conference on Networking,Architecture,and Storage[C].Shenzhen:Publishing IEEE Computer Society,2017.
[40] Wu C,He X,Han J,et al.SDM:A stripe-based data migration scheme to improve the scalability of RAID-6[A].IEEE International Conference on CLUSTER Computing[C].Beijing:Publishing IEEE Computer Society,2012.284-292.
[41] Zhang G,Li K,Wang J,et al.Accelerate RDP RAID-6 scaling by reducing disk I/Os and XOR operations[J].IEEE Transactions on Computers,2014,64(1):32-44.
[42] Xia S,Mao Y,Tan M,et al.HCS:Expanding H-Code rAID 6 without recalculating parity blocks in big data circumstance[A].International Conference of Young Computer Scientists,Engineers and Educators[C].Harbin:Publishing Communications in Computer and Information Science,2015.65-72.
[43] Zhang G,Wu G,Lu Y,et al.Xscale:Online X-Code RAID-6 scaling using lightweight data reorganization[J].IEEE Transactions on Parallel & Distributed Systems,2016,27(12):3687-3700.
[44] Wan J,Xu P,He X,et al.H-Scale:A fast approach to scale disk arrays via hybrid stripe deployment[J].ACM Transactions on Storage,2016,12(3):1-30.
[45] Wu C,He X.A flexible framework to enhance RAID-6 scalability via exploiting the similarities among MDS codes[A].International Conference on Parallel Processing[C].Lyon:Publishing IEEE Computer Society,2013.542-551.
[46] Du C,Wu C,Li J.An advanced data redistribution approach to accelerate the scale-down process of RAID-6[A].International Conference on Algorithms and Architectures for Parallel Processing[C].Dalian:Publishing Lecture Notes in Computer Science,2014.286-299.
[47] Santos J R,Muntz R R,Ribeiro-Neto B.Comparing random data allocation and data striping in multimedia servers[J].ACM Sigmetrics Performance Evaluation Review,2000,28(1):44-55.
[48] Abstract E,Salzwedel K,Scheideler C,et al.Efficient,distributed data placement strategies for storage area networks[A].ACM Symposium on Parallel Algorithms & Architectures[C].Maine:Publishing ACM,2000.119-128.
[49] Seo,Beomjoo,Zimmermann,et al.Efficient disk replacement and data migration algorithms for large disk subsystems[J].ACM Transactions on Storage,2005,1(3):316-345.
[50] Honicky R J,Miller E L.A fast algorithm for online placement and reorganization of replicated data[A].International Parallel and Distributed Processing Symposium[C].Nice:Publishing IEEE Computer Society,2003.57-68.
[51] Honicky R J,Miller E L.Replication under scalable hashing:a family of algorithms for scalable decentralized data distribution[A].International Parallel and Distributed Processing Symposium[C].New Mexico:Publishing IEEE Computer Society International,2004.1357-1366.
[52] Weil S A,Brandt S A,Miller E L,et al.CRUSH:Controlled,scalable,decentralized placement of replicated data[A].Proceedings of the ACM/IEEE SC2006 Conterence on High Performance Networking and Computing[C].Florida:Publishing ACM,2006.
[53] Miranda A,Effert S,Kang Y,et al.Reliable and randomized data distribution strategies for large scale storage systems[A].International Conference on High PERFORMANCE Computing[C].Bengaluru:Publishing IEEE Computer Society,2011.
[54] Huang J,Liang X,Xiao Q,et al.Scale-RS:An efficient scaling scheme for RS-coded storage clusters[J].IEEE Transactions on Parallel & Distributed Systems,2015,26(6):1704-1717.
[55] Wu S,Xu Y,Li Y,et al.I/O-efficient scaling schemes for distributed storage systems with CRS codes[J].IEEE Transactions on Parallel and Distributed Systems,2016,27(9):2639-2652.
[56] Xiaoyang Zhang,Yuchong Hu,Patrick P.C.Lee,Pan Zhou.Toward optimal storage scaling via network coding:from theory to practice[A].Proceedings of the IEEE International Conference on Computer Communications 2018[C].Hawaii,USA:Publishing IEEE,2018.1808-1816.
[57] Bonwick J.RAID-Z[J/OL].http://blogs.sun.com/bonwick/entry/RAIDz.Nov.2005.
[58] Facebook.HDFS RAID[J/OL].http://wiki.apache.org/Hadoop/hdfs-RAID.Nov.2011. |