[1] 丁昊,董云龙,刘宁波,等.海杂波特性认知研究进展与展望[J].雷达学报,2016,5(05):499-516 DING Hao,DONG Yun-long,LIU Ning-bo,et al.Overview and prospects of research on sea clutter property cognition[J].Journal of Radars,2016,5(05):499-516.(in chinese)
[2] 刘宁波,关键,王国庆,等.基于海杂波FRFT谱多尺度Hurst指数的目标检测方法[J].电子学报,2013,41(9):1847-1853. LIU Ning-Bo,GUAN Jian,WANG Guo-Qing,et al.Target detection within sea clutter based on multi-scale hurst exponent in frft domain[J].Acta Electronica Sinica,2013,41(9):1847-1853.(in chinese)
[3] 尹志盈,张玉石.雷达海杂波统计特性建模研究[J].装备环境工程,2017,14(7):29-34. YIN Zhi-Ying,ZHANG Yu-Shi.Radar sea clutter modeling of statistical characteristic[J].Equipment Environmental Engineering,2017,14(7):29-34.(in chinese)
[4] TUGNAIT J K.Two-channel tests for common non-Gaussian signal detection[J].IEEE Proceedings of Radar and Signal Porcessing,1993,140(6):343-349.
[5] POURNEJATIAN N M,NAYEBI M M.Fractal-multiresolution based detection of targets within sea clutter[J].Electronics Letters,2012,48(6):345.
[6] SHUI P L,LI D C,XU S W.Tri-feature-based detection of floating small targets in sea clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2014,50(2):1416-1430..
[7] DARZIKOLAEI M A,EBRAHIMZADE A A,GHOLAMI E.Classification of radar clutters with artificial neural network[A].International Conference on Knowledge-Based Engineering and Innovation[C].Tehran:IEEE,2015.577-581.
[8] VICEN-BUENO,RAúL,CARRASCO-áLVAREZ,et al.Sea clutter reduction and target enhancement by neural networks in a marine radar system[J].Sensors,2009,9(3):1913-1936.
[9] CALLAGHAN D,BURGER J,MISHRA A K.A machine learning approach to radar sea clutter suppression[A].Radar Conference[C].Seattle:IEEE,2017.1222-1227.
[10] SHI S N,SHUI P L.Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J].IEEE Transactions on Geoscience & Remote Sensing,2018,56(11):6395-6411.
[11] LéCUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[12] SIMONYAN K,VEDALDI A,ZISSERMAN A.Learning local feature descriptors using convex optimisation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(8):1573-1585.
[13] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[A].International Conference on Neural Information Processing Systems[C].Lake Tahoe,Nevada,US:NIPS,2012.1097-1105.
[14] SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[DB/OL].https://arxiv.org/pdf/1409.1556.2015-04-10/2018-09-25
[15] Lin M,Chen Q,Yan S.Network In Network[DB/OL] https://arxiv.org/abs/1312.4400,2014-03-04/2018-09-28
[16] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[A].Conference on Computer Vision and Pattern Recognition[C].Las Vegas:IEEE Computer Society,2016.770-778.
[17] GIRSHICK R,DONAHUE J,DARRELL T,et al.Region-based convolutional networks for accurate object detection and segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,38(1):142-158.
[18] 刘彩红.BP神经网络学习算法的研究[D].重庆:重庆师范大学,2008. LIU Cai-hong.BP Neural Network Learning Algorithm[D].Chongqing:Chongqing Normal University,2008.(in chinese)
[19] 王鹏.极化IPIX雷达回波数据处理与分析[D].黑龙江哈尔滨:哈尔滨工业大学,2016. WANG Peng.Research on SAR image classification and recognition based on machine learning[D].Harbin,Heilongjiang:Harbin Institute of Technology,2016.(in chinese)
[20] Drosopoulos A.Description of the OHGR database[R].Ottawa:Defence Research Establishment,1994. |