在LTE-A网络的过载场景中,机器类通信(Machine Type Communication,MTC)设备的突发性接入会使得网络发生严重的拥塞,甚至死锁,造成网络的接入效率低下.在可用前导资源有限的前提下,根据实时负载数控制发起接入的设备数可以有效降低前导的碰撞概率,但是控制方法尚不明确.为此,本文提出了一种接入类别限制(Access Class Barring,ACB)的动态接入机制来优化海量MTC的随机接入性能.建立了一种基于退避预测的估计模型,该模型根据重传的设备数和状态转移过程估计出了实时活跃的设备数.结合估计模型和ACB参数调整可以最优化实时成功接入的设备数,能够有效地提高设备的接入成功率.本文在不同负载强度场景下,将提出的ACB动态接入机制和现有的动态ACB机制的接入性能进行了比较.仿真结果证明,本文提出的ACB动态接入机制的接入成功率为100%.而且,与现有的ACB动态接入机制相比,所提的新方案的平均接入时延更低.
Abstract
In the overload scenario of the LTE-A network, the bursty access of the machine type communication (MTC) device may cause serious congestion or even deadlock in the network, resulting in low network access efficiency. Under the premise that available preambles are limited, controlling the number of devices that initiate the access according to the real-time load can effectively reduce the collision probability of the preamble, but the control method is not clear. To do this, this paper proposes a dynamic access class barring (ACB) mechanism to optimize the random access performance of the massive MTC. An estimation model based on back-off prediction is established.The model estimates the number of real-time active devices based on the number of retransmitted devices and the state transition process. Moreover, combined with the adjustment of the ACB parameter, the number of successfully accessed devices in real time can be optimized, and the access success rate of the device is effectively improved. The performance of the proposed dynamic ACB scheme is compared with that of the existing dynamic ACB schemes under different traffic degrees. Simulation results prove that the access success probability of the proposed dynamic ACB scheme is 100%. Simultaneously, the proposed novel scheme can get lower average access delay comparing with the existing dynamic ACB schemes.
关键词
海量机器类通信 /
LTE-A /
接入类别限制 /
负载估计 /
接入成功率 /
平均接入时延
{{custom_keyword}} /
Key words
massive machine type communication (mMTC) /
LTE-A /
access class barring (ACB) /
load estimation /
access success probability /
average access delay
{{custom_keyword}} /
中图分类号:
TN929.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Z Dawy,W Saad,A Ghosh.Toward massive machine type cellular communications[J].IEEE Wireless Communications,2017,24(1):120-128.
[2] 3GPP,TS 37.868.Study on RAN Improvements for Machine-type Communications (Release 11)[S].
[3] 3GPP,TS 22.368.Service Requirements for Machine-Type Communications[S].
[4] A Laya,L Alonso,J Alonso-Zarate.Is the random access channel of LTE and LTE-A suitable for M2M communications? A survey of alternatives[J].IEEE Common Surveys Tuts,2014,16(1):4-16.
[5] F Ghavimi,H-H Chen.M2M communications in 3GPP LTE/LTE-A networks:architectures,service requirements,challenges,and applications[J].IEEE Common.Surveys Tuts,2015,17(2):525-549.
[6] 3GPP,TS 22.011,V13.1.0,Service Accessibility[S].
[7] Duan S,Shah-Mansouri V,Wong V W S.Dynamic access class barring for M2M communications in LTE networks[A].Global Telecommunications (GLOBECOM)[C].Atlanta:IEEE,2013.4747-4752.
[8] Suyang Duan,Vahid Shah-Mansouri,Zehua Wang,Vincent W S Wong.D-ACB:Adaptive congestion control algorithm for bursty M2M traffic in LTE networks[J].IEEE Transactions,2016,65(12):9847-9861.
[9] H Kim,S s Lee,S Lee.Dynamic extended access barring for improved M2M communication in LTE-A networks[A].IEEE International Conference on Systems[C].Banff:IEEE,2017.2742-2747.
[10] Xin Jian,Xiaoping Zeng,YunJian Jia,et al.Beta/M/1 model for machine type communication[J].IEEE Communication Letters,2013,17(3):584-587.
[11] L Tello-Oquendo,I Leyva-Mayorga,V Pla,J Martinez-Bauset,J R Vidal,V Casares-Giner,L Guijarro.Performance analysis and optimal access class barring parameter configuration in LTE-A networks with massive M2M traffic[J].IEEE Trans,April 2018,67(4):3505-3520.
[12] Ray-Guang Cheng,Zdenek Becvar,Ping-Hsun Yang.Modeling of distributed queueing-based random access for machine type communications in mobile networks[J].IEEE Communication Letters,2018,22(1):129-132.
[13] Chia-hung Wei,Giuseppe Bianchi,Ray-guang Cheng.Modeling and analysis of random access channels with bursty arrivals in OFDMA wireless networks[J].IEEE Transactions,2015,14(4):1940-1953.
[14] Luis Tello-Oquendo,José-Ramón Vidal,Vicent Pla,Luis Guijarro.Dynamic access class barring parameter tuning in LTE-A networks with massive M2M traffic[A].Ad Hoc Networking Workshop,Med-Hoc-Net,IFIP Annual Mediterranean[C].Capri:IEEE,2018.1-8.
[15] Wen Zhan,Lin Dai.Massive random access of Machine-to-Machine communications in LTE networks:Modeling and throughput optimization[J].IEEE Transactions,2015,17(4):2771-2785.
[16] L Dai,X Sun.A unified analysis of IEEE 802.11 DCF networks:Stability,throughput,and delay[J].IEEE Trans,2013,12(8):1558-1572.
[17] Y Gao,X Sun,L Dai.IEEE 802.11e EDCA networks:Modeling,differentiation and optimization[J].IEEE Trans,2014,13(7):3863-3879.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金 (No.61771255,No.61427801)
{{custom_fund}}