[1] XU Q,LI Y H,GUO Y J,et al.Random-valued impulse noise removal using adaptive ranked-ordered impulse detector[J].Journal of Electronic Imaging,2018,27(1):013001.
[2] GARNETT R,HUEGERICH T,CHUI C,et al.A universal noise removal algorithm with an impulse detector[J].IEEE Transactions on Image Processing,2005,14(11):1747-1754.
[3] DONG Y Q,CHAN R H,XU S F.A detection statistic for random-valued impulse noise[J].IEEE Transactions on Image Processing,2007,16(4):1112-1120.
[4] LIU L C,CHEN C L P,ZHOU Y C,et al.A new weighted mean filter with a two-phase detector for removing impulse noise[J].Information Sciences,2015,315(September):1-16.
[5] TURKMEN I.The ANN based detector to remove random-valued impulse noise in images[J].Visual Communication and Image Representation,2016,34(October):28-36.
[6] SOLEIMANY S,BRANCH Q,HAMGHALAM M,et al.A novel random-valued impulse noise detector based on MLP neural network classifier[A].Proceedings of the 2017 Artificial Intelligence and Robotics (IRANOPEN)[C].Piscataway,NJ:IEEE,2017.165-169.
[7] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. ZHOU Fei-yan,JIN Lin-peng,DONG Jun.Review of convolutional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251.(in Chinese)
[8] 李宝奇,贺昱曜,何灵蛟,等.基于全卷积神经网络的非对称并行语义分割模型[J].电子学报,2019,47(5):1058-1064. LI Bao-qi,HE Yu-yao,HE Ling-jiao,et al.Asymmetric parallel semantic segmentation model based on full convolutional neural network[J].Acta Electronica Sinica,2019,47(5):1058-1064.(in Chinese)
[9] 李康,李亚敏,胡学敏,等.基于卷积神经网络的鲁棒高精度目标跟踪算法[J].电子学报,2018,46(9):2087-2093. LI Kang,LI Ya-min,HU Xue-min,et al.A robust and accurate object tracking algorithm based on convolutional neural network[J].Acta Electronica Sinica,2018,46(9):2087-2093.(in Chinese)
[10] ZHANG K,ZUO W M,CHEN Y J,et al.Beyond a Gaussian denoiser:Residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing,2016,26(7):3142-3155.
[11] ZHANG K,ZUO W M,ZHANG L.FFDNet:Toward a fast and flexible solution for CNN based image denoising[J].IEEE Transactions on Image Processing,2018,27(9):4608-4622.
[12] LEFKIMMIATIS S.Universal denoising networks:A novel CNN architecture for image denoising[A].Proceedings of the 2018 Computer Vision and Pattern Recognition[C].Piscataway,NJ:IEEE,2018.3204-3213.
[13] RAWAT W,WANG Z H.Deep convolutional neural networks for image classification:A comprehensive review[J].Neural Computation,2017,29(9):2352-2449.
[14] IOFFE S,SZEGEDY C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[EB/OL].https://arxiv.org/abs/1502.03167,2015-03-02/2019-08-10.
[15] ZHANG L,ZHANG L,BOVIK A C.A feature-enriched completely blind image quality evaluator[J].IEEE Transactions on Image Processing,2015,24(8):2579-2591.
[16] PONOMARENKO N,JIN L,IEREMEIEV O,et al.Image database TID2013:Peculiarities,results and perspectives[J].Signal Processing:Image Communication,2015,30(1):57-77.
[17] ARBELAEZ P,MAIRE M,FOWLKES C,et al.Contour detection and hierarchical image segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(5):898-916.
[18] AKKOUL S,LÉDÉE R,LECONGE R,et al.A new adaptive switching median filter[J].IEEE Signal Processing Letters,2010,17(6):587-590.
[19] WANG Z,ZHANG D.Progressive switching median filter for the removal of impulse noise highly corrupted images[J].IEEE Transactions on Circuits System II:Analog Digit Signal Processing.1999,46(1):78-80.
[20] XIONG B,YIN Z P.A universal denoising framework with a new impulse detector and nonlocal means[J].IEEE Transactions on Image Processing,2012,21(4):1663-1675.
[21] JIN K H,YE J C.Sparse and low-rank decomposition of a Hankel structured matrix for impulse noise removal[J].IEEE Transactions on Image Processing,2018,27(3):1448-1461.
[22] LIU P,FANG R G.Learning Pixel-Distribution Prior with Wider Convolution for Image Denoising[EB/OL].https://arxiv.org/abs/1707.09135,2017-07-28/2019-08-10.
[23] MAO X J,SHEN C H,YANG Y B.Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections[EB/OL].https://arxiv.org/abs/1603.09056,2016-09-01/2019-08-10.
[24] PARK S,YU S,KIM M,et al.Dual autoencoder network for Retinex-based low-light image enhancement[J].IEEE Access,2018,6:22084-22093. |