[1] Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[2] Candes E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on InformationTheory,2006,52(2):489-509.
[3] Gan L.Block compressed sensing of natural images[A].15th International Conference on Digital Signal Processing[C].Cardiff,UK:IEEE,2007.403-406
[4] Mun S,Fowler J E.Block compressed sensing of images using directional transforms[A].16th IEEE International Conference on Image Processing(ICIP)[C].Cairo,Egypt:IEEE,2009.3021-3024.
[5] Chen R,Tong Y,Yang J,et al.Compressed video sensing with multi-hypothesis prediction[A].International Conference on Emerging Internetworking,Data & Web Technologies[C].China:Springer,2017.489-496.
[6] Zhao C,Ma S,Gao W.Image compressive-sensing recovery using structured laplacian sparsity in DCT domain and multi-hypothesis prediction[A].IEEE International Conference on Multimedia and Expo(ICME)[C].Chengdu,China:IEEE,2014.1-6.
[7] Zhang J,Zhao D,Gao W.Group-based sparse representation for image restoration[J].IEEE Transactions on Image Processing,2014,23(8):3336-3351.
[8] Kulkarni K,Lohit S,Turaga P,et al.Reconnet:Non-iterative reconstruction of images from compressively sensed measurements[A].IEEE Conference on Computer Vision and Pattern Recognition(CVPR)[C].Las Vegas,USA:IEEE,2016.449-458.
[9] Yao H,Dai F,Zhang D,et al.DR2-net:Deep residual reconstruction network for image compressive sensing[DB/OL].https://arxiv.org/abs/1702.05743,2017-02-19.
[10] Zhang J,Ghanem B.ISTA-Net:Interpretable optimization-inspired deep network for image compressive sensing[A].IEEE/CVF Conference on Computer Vision and Pattern Recognition[C].Salt Lake City,USA:IEEE,2018.1828-1837.
[11] Cui W,Jiang F,Gao X,et al.Deep neural network based sparse measurement matrix for image compressed sensing[A].25th IEEE International Conference on Image Processing(ICIP)[C].Athens,Greece:IEEE,2018.3883-3887.
[12] Lu X,Dong W,Wang P,et al.ConvCSNet:A convolutional compressive sensing framework based on deep learning[DB/OL].https://arxiv.org/abs/1801.10342,2018-01-31.
[13] Tramel E W,Fowler J E.Video compressed sensing with multihypothesis[A].Data Compression Conference[C].Snowbird,USA:IEEE,2011.193-202.
[14] Chen J,Chen Y,Qin D,et al.An elastic net-based hybrid hypothesis method for compressed video sensing[J].Multimedia Tools & Applications,2015,74(6):2085-2108.
[15] Kuo Y,Wu K,Chen J.A scheme for distributed compressed video sensing based on hypothesis set optimization techniques[J].Multidimensional Systems and Signal Processing,2017,28(1):129-148.
[16] Chen J,Wang N,Xue F,et al.Distributed compressed video sensing based on the optimization of hypothesis set update technique[J].Multimedia Tools and Applications,2017,76(14):15735-15754.
[17] Chen R,Tong Y,Yang J,et al.Compressed video sensing with multi-hypothesis prediction[A].International Conference on Emerging Internetworking,Data & Web Technologies[C].China:Springer,2017.489-496.
[18] 杨春玲,欧伟枫.CVS 中基于多参考帧的最优多假设预测算法[J].华南理工大学学报(自然科学版),2016,44(1):1-8. YANG Chun-ling,OU Wei-feng.Multi-reference frames-based optimal multi-hypothesis prediction algorithm for compressed video sensing [J].Journal of South China University of Technology(Natural Science Edition),2016,44(1):1-8.(in Chinese)
[19] 欧伟枫,杨春玲,戴超.一种视频压缩感知中两级多假设重构及实现方法[J].电子与信息学报,2017,39(7):1688-1696. OU Wei-feng,YANG Chun-ling,DAI Chao.A two-stage multi-hypothesis reconstruction and two implementation schemes for compressed video sensing [J].Journal of Electronics & Information Technology,2017,39(7):1688-1696.(in Chinese)
[20] 杨春玲,戴超.视频压缩感知中基于菱形快速搜索的双匹配区域预测[J].华南理工大学学报(自然科学版),2018,46(03):55-63. YANG Chun-ling,Dai Chao.A prediction scheme based on fast diamond search and two match regions in compressed video sensing [J].Journal of South China University of Technology(Natural Science Edition),2018,46(03):55-63.(in Chinese)
[21] Li W,Yang C,Ma L.A multihypothesis-based residual reconstruction scheme in compressed video sensing[A].IEEE International Conference on Image Processing(ICIP)[C].Beijing,China:IEEE,2017.2766-2770.
[22] Zhao C,Ma S,Zhang J,et al.Video compressive sensing reconstruction via reweighted residual sparsity[J].IEEE Transactions on Circuits and Systems for Video Technology,2017,27(6):1182-1195.
[23] 和志杰,杨春玲,汤瑞东.视频压缩感知中基于结构相似的帧间组稀疏表示重构算法研究[J].电子学报,2018,46(3):544-553. HE Zhi-jie,YANG Chun-ling,TANG Rui-dong.Research on structural similarity based inter-frame group sparse representation for compressed video sensing[J].Acta Electronica Sinica,2018,46(3):544-553.(in Chinese)
[24] 杨春玲,郑学炜.CVS中基于多维度参考帧的双稀疏重构算法[J].华南理工大学学报(自然科学版),2018,46(08):1-10. YANG Chun-ling,ZHENG Xue-wei.Dual-sparsity reconstruction algorithm based on multi-dimension reference frames in compressed video sensing[J].Journal of South China University of Technology(Natural Science Edition),2018,46(08):1-10.(in Chinese) |