[1] 马红强,马时平,许悦雷,朱明明.基于深度卷积神经网络的低照度图像增强[J].光学学报,2019,39(02):99-108. Ma H Q,Ma S P,Xu Y L,Zhu M M.Low-light image enhancement based on deep convolutional neural network[J].Acta Optica Sinica,2019,39(02):99-108.(in Chinese)
[2] Gonzalez R C,Woods R E.Digital Image Processing [M].Prentice-Hall,Inc.2007.
[3] Land E H E.Lightness andretinex theory[J].Journal of the Optical Society of America,1971,61(1):1-11.
[4] Jobson D J,Rahman Z,Woodell G A.A multiscale retinex for bridging the gap between color images and the human observation of scenes[J].IEEE Transactions on Image Processing,1997,6(7):965-976.
[5] Guo X,Li Y,Ling H.LIME:Low-light image enhancement via illumination map estimation[J].IEEE Transactions on Image Processing,2017,26(2):982-993.
[6] Dong X,Guan W,Pang Y,et al.,Fast efficient algorithm for enhancement of low lighting video[A].2011 IEEE ICME[C].Barcelona,2011.1-6.
[7] 刘超,张晓晖.超低照度下微光图像的深度卷积自编码网络复原[J].光学精密工程,2018,26(04):951-961. LIUC,ZHANG X H.Deep convolution autoencoder networks approach to low-light level image restoration under extreme low-light illumination[J].Optics and Precision Engineering,2018,26(04):951-961.(in Chinese)
[8] Goodfellow I J,Pouget-Abadie J,Mirza M,et al.Generative adversarial nets[A].International Conference on Neural Information Processing Systems (NIPS) [C].MIT Press,2014.2672-2680.
[9] Mirza M,Osindero S.Conditional generative adversarial nets[J].Computer Science,2014:2672-2680.
[10] P Isola,J Zhu,T Zhou,A A Efros.Image-to-image translation with conditional adversarial networks[A].2017 IEEE Conference on CVPR[C].Honolulu,HI,2017.5967-5976.
[11] Ronneberger O,Fischer P,Brox T.U-net:convolutional networks for biomedical image segmentation[A].Medical Image Computing and Computer-Assisted Intervention[C].Munich,Germany:Springer,2015,9351.234-241.
[12] A Radford,LMetz,S Chintala.Unsupervised representation learning with deep convolutional generative adversarial networks[A].International Conference on Learning Representations (ICLR)[C].arXiv:1511.06434v2.
[13] Ledig C,Theis L,Huszar F,et al.Photo-realistic single image super-resolution using a generative adversarial network[A].Computer Vision and Pattern Recognition[C].IEEE,2016.4681-4690.
[14] W Hua,Y Xia.Low-light image enhancement based on joint generative adversarial network and image quality assessment[A].11th CISP-BMEI[C].Beijing,China,2018.1-6.
[15] Talebi H,Milanfar P.NIMA:neural image assessment[J].IEEE Transactions on Image Processing,2018,27(8):3998-4011.
[16] Moorthy A K,Bovik A C.A two-step framework for constructing blind image quality indices[J].Signal Processing Letters,2010,17(5):513-516.
[17] Mittal A,Moorthy A K,Bovik A C.No-reference image quality assessment in the spatial domain[J].IEEE Transactions on Image Processing,2012,21(12):4695.
[18] Vonikakis V,Kouskouridas R,Gasteratos A.On the evaluation of illumination compensation algorithms[J].Multimedia Tools & Applications,2017:1-21.
[19] Lee C,Lee C,Kim C S.Contrast enhancement based on layered difference representation[A].IEEE International Conference on Image Processing[C].IEEE,2013.965-968.
[20] Sheikh H R,Sabir M F,Bovik A C.A statistical evaluation of recent full reference image quality assessment algorithms[J].IEEE Transactions on Image Processing,2006,15(11):3440-3451. |