[1] Pan S J,Tsang I W,Kwok J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2011,22(2):199-210.
[2] Pan S J,Kwok J T,Yang Q.Transfer learning via dimensionality reduction[A].Association for the Advance of Artificial Intelligence[C].Menlo Park,CA:AAAI,2008.677-682.
[3] Long M,Wang J,Ding G,et al.Transfer feature learning with joint distribution adaptation[A].IEEE International Conference on Computer Vision[C].Washington:IEEE,2013.2200-2207.
[4] Wang J,Chen Y,Hao S,et al.Balanced distribution adaptation for transfer learning[A].IEEE International Conference on Data Mining[C].Washington: IEEE,2017.1129-1134.
[5] Zhang L,Liu Y,He Z,et al.Anti-drift in E-nose:A subspace projection approach with drift reduction[J].Sensors and Actuators B:Chemical,2017,253:407-417.
[6] Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning[A].2006 Conference on Empirical Methods in Natural Language Processing[C].Sydney:Association for Computational Linguistics,2006.120-128.
[7] Satpal S,Sarawagi S.Domain adaptation of conditional probability models via feature subsetting[A].European Conference on Principles of Data Mining and Knowledge Discovery[C].Berlin Heidelberg:Springer-Verlag,2007.224-235.
[8] Fernando B,Habrard A,Sebban M,et al.Unsupervised visual domain adaptation using subspace alignment[A].IEEE Conference on Computer Vision[C].Washington:IEEE,2013.2960-2967.
[9] Ghifary M,Balduzzi D,Kleijn W B,et al.Scatter component analysis:A unified framework for domain adaptation and domain generalization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(7):1414-1430.
[10] Ben X,Gong C,Zhang P,et al.Coupled bilinear discriminant projection for cross-view gait recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,(99):1-1.
[11] Shashua A,Levin A.Linear image coding for regression and classification using the tensor-Rank principle[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington:IEEE,2001.42-49.
[12] Ben X,Zhang P,Lai Z,et al.A general tensor representation framework for cross-view gait recognition[J].Pattern Recognition,2019,90:87-98.
[13] Kolda T,Bader B.The TOPHITS model for higher-order web link analysis[A].Workshop on Link Analysis,Counterterrorism and Security[C].Bethesda:Link Analysis,Counterterrorism and Security,2006.7:26-29.
[14] Lu H,Zhang L,Cao Z,et al.When unsupervised domain adaptation meets tensor representations[A].IEEE International Conference on Computer Vision[C].Washington:IEEE,2017.599-608.
[15] Wang J,Feng W,Chen Y,et al.Visual domain adaptation with manifold embedded distribution alignment[A].ACM Multimedia Conference on Multimedia Conference[C].New York:ACM,2018.402-410.
[16] Gong B,Shi Y,Sha F,et al.Geodesic flow kernel for unsupervised domain adaptation[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington:IEEE,2012.2066-2073.
[17] Venkateswara H,Eusebio J,Chakraborty S,et al.Deep hashing network for unsupervised domain adaptation[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington:IEEE,2017.5018-5027.
[18] Arbelaez P,Maire M,Fowlkes C,et al.Contour detection and hierarchical image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011.33(5):898-916.
[19] Sun B,Feng J,Saenko K.Return of frustratingly easy domain adaptation[A].Thirtieth AAAI Conference on Artificial Intelligence[C].Phoenix,Arizona:AAAI,2016.2058-2065.
[20] Zhang J,Li W,Ogunbona P.Joint geometrical and statistical alignment for visual domain adaptation[A].IEEE Conference on Computer Vision and Pattern Recognition[C].Washington:IEEE,2017.1859-1867. |