[1] PAWLAK Z.Rough sets[J].International Journal of Computer & Information Sciences,1982,11(5):341-356.
[2] 邓大勇,薛欢欢,苗夺谦,等.属性约简准则与约简信息损失的研究[J].电子学报,2017,45(2):401-407. DENG D-Y,XUE H-H,MIAO D-Q,et al.Study on criteria of attribute reduction and information loss of attribute reduction[J].Acta Electronica Sinica,2017,45(2):401-407.(in Chinese)
[3] 续欣莹,张扩,谢珺,等.基于互信息下粒子群优化的属性约简算法[J].电子学报,2017,45(11):2695-2704. XU X-Y,ZHANG K,XIE J,et al.An attribute reduction based on mutual information of particle swarm optimization[J].Acta Electronica Sinica,2017,45(11):2695-2704.(in Chinese)
[4] CHAN C C.A rough set approach to attribute generalization in data mining[J].Information Sciences,1998,107(1-4):169-176.
[5] SHU W H,SHEN H.Updating attribute reduction in incomplete decision systems with the variation of attribute set[J].International Journal of Approximate Reasoning,2014,55(3):867-884.
[6] SHU W H,SHEN H.Incremental feature selection based on rough set in dynamic incomplete data[J].Pattern Recognition,2014,47(12):3890-3906.
[7] QIAN W B,SHU W H,YANG B R,et al.An incremental algorithm to feature selection in decision systems with the variation of feature set[J].Chinese Journal of Electronics,2015,24(1):128-133.
[8] CHEN D G,YANG Y Y,DONG Z.An incremental algorithm for attribute reduction with variable precision rough sets[J].Applied Soft Computing,2016,45:129-149.
[9] WEI W,WU X,LIANG J Y,et al.Discernibility matrix based incremental attribute reduction for dynamic data[J].Knowledge-Based Systems,2018,140(15):142-157.
[10] 钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496-502. QIAN J,ZHU YY.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11(4):496-502.(in Chinese)
[11] LANG G M,MIAO D Q,CAI M J,et al.Incremental approaches for updating reducts in dynamic covering information systems[J].Knowledge-Based Systems,2017,134(15):85-104.
[12] XIE X J,QIN X L.A novel incremental attribute reduction approach for dynamic incomplete decision systems[J].International Journal of Approximate Reasoning,2018,93:443-462.
[13] JING Y G,LI T R,FUJITA H,et al.An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view[J].Information Sciences,2017,411:23-38.
[14] JING Y G,LI T R,LUO C,et al.An incremental approach for attribute reduction based on knowledge granularity[J].Knowledge-Based Systems,2016,104(15):24-38.
[15] HU Q H,YU D R,LIU J F,et al.Neighborhood rough set based heterogeneous feature subset selection[J].Information Sciences,2008,178(18):3577-3594.
[16] 黄恒秋,曾玲,黎利辉.混合值不完备系统的双邻域粗糙集分类方法[J].控制与决策,2018,33(7):1207-1214. HUANG H Q,ZENG L,LI L H.Double-neighborhood rough set classification method in incomplete decision system with hybrid value[J].Control and Decision,2018,33(7):1207-1214.(in Chinese)
[17] ZHAO H,QIN K.Mixed feature selection in incomplete decision table[J].Knowledge-Based Systems,2014,57(2):181-190.
[18] ZHANG J B,LI T R,RUAN D,et al.Neighborhood rough sets for dynamic data mining[J].International Journal of Intelligent Systems,2012,27:317-342.
[19] YAO Y Y,ZHAO Y.Data analysis based on discernibility and indiscernibility[J].Information Sciences,2007,177(22):4959-4976.
[20] TENG S H,LU M,YANG A F,et al.Efficient attribute reduction from the viewpoint of discernibility[J].Information Sciences,2016,326(1):297-314.
[21] SUSMAGA R.Reducts and constructs in attribute reduction[J].Fundamenta Informaticae,2004,61:159-181.
[22] 姚晟,徐风,赵鹏,等.基于邻域量化容差关系粗糙集模型的特征选择算法[J].模式识别与人工智能,2017,30(5):416-428. YAO S,XU F,ZHAO P,et al.Feature selection algorithm based on neighborhood valued tolerance relation rough set model[J].Pattern Recognition and Artificial Intelligence,2017,30(5):416-428.(in Chinese)
[23] 胡峰,王蕾,周耀.基于三支决策的不平衡数据过采样方法[J].电子学报,2018,46(1):135-144. HU F,WANG L,ZHOU Y.An oversampling method for imbalance data based on three-way decision model[J].Acta Electronica Sinica,2018,46(1):135-144.(in Chinese) |