[1] 王啸,崔鹏,朱文武.网络表征学习中的基本问题初探[J].中国计算机学会通讯,2018,14(3):11-15. WANG Xiao,CUI Peng,ZHU Wen-wu.A preliminary research on the fundamental problems of network representation learning[J].Communications of the CCF,2018,14(3):11-15.(in Chinese)
[2] QIAO S,HAN N,GAO Y,et al.A fast parallel community discovery model on complex networks through approximate optimization[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1638-1651.
[3] WHITE H,BOORMAN S,BREIGER R.Social structure from multiple networks-blockmodels of roles and positions[J].American Journal of Sociology,1976,81(4):730-780.
[4] ADAMIC L,ADAR E.Friends and neighbors on the web[J].Social Networks,2003,25(3):211-230.
[5] FU T,LEE W,LEI Z.HIN2Vec:explore meta-paths in heterogeneous information networks for representation learning[A].Proceedings of the 2017 ACM on Conference on Information and Knowledge Management[C].Singapore:ACM,2017.1797-1806.
[6] TANG J,QU M,MEI Q.Pte:Predictive text embedding through large-scale heterogeneous text networks[A].Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Sydney,Australia:ACM,2015.1165-1174.
[7] YUE K,FANG Q,WANG X,et al.A parallel and incremental approach for data-intensive learning of Bayesian networks[J].IEEE Transactions on Cybernetics,2015,45(12):2890-2904.
[8] GOYAL P,FERRARA E.Graph embedding techniques,applications,and performance:A survey[J].Knowledge-Based Systems,2018,151:78-94.
[9] CAI H,ZHENG V,CHANG C.A comprehensive survey of graph embedding:problems,techniques and applications[J].IEEE Transactions on Knowledge and Data Engineering,2018,30(9):1616-1637.
[10] CUI P,WANG X,PEI J,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2019,31(5):833-852.
[11] HAMILTON W,YING R,LESKOVEC J.Representation learning on graphs:methods and applications[J].IEEE Data Engineering Bulletin,2017,40(1):52-74.
[12] 涂存超,杨成,刘知远,等.网络表示学习综述[J].中国科学:信息科学,2017,47(8):980-996. TU Cunchao,YANG Cheng,LIU Zhiyuan,et al.Network representation learning:an overview[J].SCIENTIA SINICA Informationis,2017,47(8):980-996.(in Chinese)
[13] BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[A].Proceedings of Advances in Neural Information Processing Systems[C].Vancouver,British Columbia,Canada:MIT Press,2001.585-591.
[14] TENENBAUM J,DE SILVA V,LANGFORD J.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
[15] ROWEIS S,SAUL L.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326.
[16] PEROZZI B,AI-RFOU R,SKIENA S.Deepwalk:Online learning of social representations[A].Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].New York,USA:ACM,2014.701-710.
[17] YANG C,LIU Z,ZHAO D,et al.Network representation learning with rich text information[A].Proceedings of the 24th International Joint Conference on Artificial Intelligence[C].Buenos Aires,Argentina:Morgan Kaufmann,2015.2111-2117.
[18] TU C,LIU H,LIU Z,et al.Cane:Context-aware network embedding for relation modeling[A].Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics[C].Vancouver,Canada:ACL,2017.1722-1731.
[19] LUO D,DING C,NIE F,et al.Cauchy graph embedding[A].Proceedings of the 28th International Conference on Machine Learning[C].Bellevue,Washington,USA:ACM,2011.553-560.
[20] CAO S,LU W,XU Q.Grarep:Learning graph representations with global structural information[A].Proceedings of the 24th ACM International Conference on Information and Knowledge Management[C].Melbourne,Australia:ACM,2015.891-900.
[21] OU M,CUI P,PEI J,et al.Asymmetric transitivity preserving graph embedding[A].Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].San Francisco,CA,USA:ACM,2016.672-681.
[22] GROVER A,LESKOVEC J.Node2vec:Scalable feature learning for networks[A].Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].San Francisco,CA,USA:ACM,2016.855-864.
[23] DONG Y,CHAWLA N,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[A].Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].Halifax,NS,Canada:ACM,2017.135-144.
[24] WANG D,CUI P,ZHU W.Structural deep network embedding[A].Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].San Francisco,CA,USA:ACM,2016.1225-1234.
[25] CAO S,LU W,XU Q.Deep neural networks for learning graph representations[A].Proceedings of the 33rd AAAI Conference on Artificial Intelligence[C].Phoenix,Arizona,USA:AAAI,2016.1145-1152.
[26] HAMILTON W,YING R,LESKOVEC J.Inductive representation learning on large graphs[A].Proceedings of Advances in Neural Information Processing Systems [C].Long Beach,CA,USA:MIT Press,2017.1024-1034.
[27] TANG J,QU M,WANG M,et al.Line:Large scale information network embedding[A].Proceedings of the 24th International World Wide Web Conference[C].Florence,Italy:ACM,2015.1067-1077.
[28] YANG C,SUN M,LIU Z,et al.Fast network embedding enhancement via high order proximity approximation[A].Proceedings of the 26th International Joint Conference on Artificial Intelligence[C].Melbourne,Australia:Morgan Kaufmann,2017.3894-3900.
[29] BOURIGAULT S,LAGNIER C,LAMPRIER S,et al.Learning social network embeddings for predicting information diffusion[A].Proceedings of the 7th ACM International Conference on Web Search and Data Mining[C].New York,NY,USA:ACM,2014.393-402.
[30] LI C,MA J,GUO X,et al.DeepCas:An end-to-end predictor of information cascades[A].Proceedings of the 26th International Conference on World Wide Web[C].Perth,Australia:ACM,2017.577-586.
[31] BORDES A,USUNIER A,et al.Translating embeddings for modeling multi-relational data[A].Proceedings of the 27th Annual Conference on Neural Information Processing Systems[C].Lake Tahoe,Nevada,United States:MIT Press,2013.2787-2795.
[32] ZOU L,CHEN L,ZHAO D,et al.Answering pattern match queries in large graph databases via graph embedding[J].VLDB Journal,2012,21(1):97-120.
[33] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[A].Proceedings of Advances in Neural Information Processing Systems [C].Lake Tahoe,Nevada,United States:MIT Press,2013.3111-3119.
[34] 潘博,于重重,张青川,等.基于词性与词序的相关因子训练的word2vec改进模型[J].电子学报,2018,46(8):1976-1982. PAN Bo,YU Chong-chong,ZHANG Qing-chuan,et al.The improved model for word2vec based on part of speech and word order[J].Acta Electronica Sinica,2018,46(8):1976-1982.(in Chinese)
[35] WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[A].Proceedings of the 28th AAAI Conference on Artificial Intelligence[C].Québec City,Québec,Canada:AAAI,2014.1112-1119.
[36] LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[A].Proceedings of the 29th AAAI Conference on Artificial Intelligence[C].Austin,Texas,USA:AAAI,2015.2181-2187.
[37] JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[A].Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics[C].Stroudsburg,PA:ACL,2015.687-696.
[38] JI G,LIU K,HE S,et al.Knowledge graph completion with adaptive sparse transfer matrix[A].Proceedings of the 30th AAAI Conference on Artificial Intelligence[C].Phoenix,Arizona,USA:AAAI,2016.985-991.
[39] HE S,LIU K,JI G,et al.Learning to represent knowledge graphs with Gaussian embedding[A].Proceedings of the 24th ACM International Conference on Information and Knowledge Management[C].Melbourne,VIC,Australia:CIKM,2015.623-632.
[40] RIBA P,LLAD ÓS J,FORNÉS A,et al.Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases[J].Pattern Recognition Letters,2017,87:203-211.
[41] LINIAL N,LONDON E,RABINOVICH Y.The geometry of graphs and some of its algorithmic applications[J].Combinatorica,1995,15(2):215-245.
[42] LI J,ZHU J,ZHANG B.Discriminative deep random walk for network classification[A].Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics[C].Stroudsburg,PA:ACL,2016.1004-1013.
[43] PEROZZI B,KULKARNI V,CHEN H,et al.Don’t walk,skip! online learning of multi-scale network embeddings[A].Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining[C].Sydney,Australia:IEEE/ACM,2017.258-265.
[44] CAVALLARI S,ZHENG V,CAI H,et al.Learning community embedding with community detection and node embedding on graphs[A].Proceedings of the 2017 ACM Conference on Information and Knowledge Management[C].Singapore:ACM,2017.377-386.
[45] HALKIDI M,BATISTAKIS Y,VAZIRGIANNIS M.On clustering validation techniques[J].Journal of Intelligent Information Systems,2001,17(2-3):107-145.
[46] MAATEN L,HINTON G.Visualizing data using t-sne[J].Journal of Machine Learning Research,2008:2579-2605.
[47] BHAGAT S,COMODE G,MUTHUKRISHNAN S.Node Classification in Social Networks.Social Network Data Analytics[M].Boston,MA:Springer,2011.115-148.
[48] TU C,ZENG X,WANG H,et al.A unified framework for community detection and network representation learning[J].IEEE Transactions on Knowledge and Data Engineering,2018,DOI:10.1109/TKDE.2018.2852958.
[49] HU R,AGGARWAL C,MA S,et al.An embedding approach to anomaly detection[A].Proceedings of the 32nd IEEE International Conference on Data Engineering[C].Helsinki,Finland:IEEE,2016.385-396.
[50] SHI C,HU B,ZHAO W,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2019,31(2):357-370.
[51] ZHOU Y,CHENG H,YU J.Graph clustering based on structural/attribute similarities[J].The Proceedings of the VLDB Endowment,2009,2(1):718-729.
[52] CLAUSET A,MOORE C,Newman M.Hierarchical structure and the prediction of missing links in networks[J].Nature,2008,453(7191):98-101.
[53] LIU W,YUE K,YUE M,et al.A Bayesian network based approach for incremental learning of uncertain knowledge[J].International Journal of Uncertainty,Fuzziness,and Knowledge-based Systems,2018,26(1):87-108. |