[1] 宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. SONG Xiang-fa,JIAO Li-cheng.Classification of hyperspectral remote sensing image based on sparse representation and spectral information[J].Journal of Electronics & Information Technology,2012,34(2):268-272.(in Chinese)
[2] 张绍泉,李军,邓承志,汪胜前.空谱联合的高光谱遥感图像稀疏解混综述与展望[J].南昌工程学院学报,2018,37(6):99-105. ZHANG Shao-quan,LI Jun,DENG Cheng-zhi,WANG Sheng-Qian.Survey and prospect of spatial-spectral sparse regression-based hyperspectral image unmixing[J].Journal of Nanchang Institute of Technology,2018,37(6):99-105.(in Chinese)
[3] 杜培军,夏俊士,薛朝辉,等.高光谱遥感影像分类研究进展[J].遥感学报,2016,20(2):236-256. DU Pei-jun,XIA Jun-shi,XUE Zhao-hui,et al.Review of hyperspectral remote sensing image classification[J].Journal of Remote Sensing,2016,20(2):236-256.(in Chinese)
[4] 童庆禧,张兵,张立福.中国高光谱遥感的前沿进展[J].遥感学报,2016,20(5):689-707. TONG Qing-xi,ZHANG Bing,ZHANG Li-fu.Current progress of hyperspectral remote sensing in China[J].Journal of Remote Sensing,2016,20(5):689-707.(in Chinese)
[5] 王雪松,胡汇涓,程玉虎.遥感影像的半监督判别局部排列降维[J].电子学报,2014,42(1):84-88. WANG Xue-song,HU Hui-juan,CHENG Yu-hu.Dimensionality reduction of remote sensing image using semi-supervised discriminative locality alignment[J].Acta Electronica Sinica,2014,42(1):84-88.(in Chinese)
[6] 唐意东,黄树彩,薛爱军.面向目标检测基于稀疏表示的波段选择方法[J].电子学报,2017,45(10):2368-2374. TANG Yi-dong,HUANG Shu-cai,XUE Ai-jun.Sparse representation based band selection for hyperspectral imagery target detection[J].Acta Electronica Sinica,2017,45(10):2368-2374.(in Chinese)
[7] 陈允杰,马辰阳,等.基于边缘修正的高光谱图像超像素空谱核分类方法[J].电子学报,2019,47(1):73-81. CHEN Yun-jie,MA Chen-yang,et al.Edge-modified superpixel based spectral-spatial kernel method for hyperspectral image classification[J].Acta Electronica Sinica,2019,47(1):73-81.(in Chinese)
[8] BACHMANN C M,AINSWORTH T L,FUSINA R A.Exploiting manifold geometry in hyperspectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):441-454.
[9] LUO F L,HUANG H,DUAN Y L,et al.Local geometric structure feature for dimensionality reduction of hyperspectral imagery[J].Remote Sensing,2017,9(8):6197-6211.
[10] HUANG H,Luo F L,LIU J M,et al.Dimensionality reduction of hyperspectral images based on sparse discriminant manifold embedding[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,106:42-54.
[11] LV M,HOU Q L,et al.Collaborative discriminative manifold embedding for hyperspectral imagery[J].IEEE Geoscience and Remote Sensing Letters,2017,14(4):569-573.
[12] 王立志,黄鸿,冯海亮.多线性局部与全局保持嵌入在高光谱遥感影像分类中的应用[J].计算机辅助设计与图形学学报,2012,24(6):780-786. WANG Li-zhi,HUANG Hong,FENG Hai-liang.Multi-linear local and global preserving embedding and its application in hyperspectral remote sensing image classification[J].Journal of Computer-Aided Design & Computer Graphics,2012,24(6):780-786.(in Chinese)
[13] XIAO R,ZHAO Q J,et al.Facial expression recognition on multiple manifolds[J].Pattern Recognition,2011,44(1):107-116.
[14] HETTIARACHCHI R,PETERS J F.Multi-manifold LLE learning in pattern recognition[J].Pattern Recognition,2015,48(9):2947-2960.
[15] SHI L K,HAO J S,ZHANG X.Image recognition method based on supervised multi-manifold learning[J].Journal of intelligent & fuzzy systems,2017,32(3):2221-2232.
[16] YAN S C,XU D,ZHANG B Y,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.
[17] PRASAD S,BRUCE L M.Limitations of principal components analysis for hyperspectral target recognition[J].IEEE Geoscience and Remote Sensing Letters,2008,5(4):625-629.
[18] HE X F,CAI D,YAN S C,et al.Neighborhood preserving embedding[A].Tenth IEEE International Conference on Computer Vision (ICCV)[C].Beijing,China:IEEE,2005.1208-1213.
[19] HE X F,YAN S,HU Y,et al.Face recognition using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340.
[20] BANDOS T V,et al.Classification of hyperspectral images with regularized linear discriminant analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(3):862-873. |