电子学报 ›› 2020, Vol. 48 ›› Issue (8): 1596-1604.DOI: 10.3969/j.issn.0372-2112.2020.08.019
孙文静, 李军华, 黎明
收稿日期:
2019-11-16
修回日期:
2020-01-10
出版日期:
2020-08-25
通讯作者:
作者简介:
基金资助:
SUN Wen-jing, LI Jun-hua, LI Ming
Received:
2019-11-16
Revised:
2020-01-10
Online:
2020-08-25
Published:
2020-08-25
Corresponding author:
Supported by:
摘要: 基于松弛支配的高维多目标进化算法(Many-objective Evolutionary Algorithms,MaOEAs)由于能够有效地提高区分解的能力,受到广泛关注,但该类大多数算法处理不同目标的优化问题时普适性较差.针对这个问题,本文提出一种基于自适应支配准则的高维多目标进化算法(Adaptive Dominance Criterion Based Evolutionary Algorithm for Many-objective Optimization,ADCEA).首先,自适应准则(Adaptive Dominance Criterion,ADC)根据目标空间中相邻解间的角度信息和目标数目,设计一种自适应小生境方法,并结合收敛性指标信息,实现对候选解的非支配排序.然后,为了进一步增强种群的多样性,在环境选择中引入参考向量分割种群技术;最后,构建合理的适应度函数,并根据适应度值大小选取收敛性和多样性较好的非支配解集.实验证明,本文所提的方法在处理不同目标的优化问题时普适性提高,并在平衡种群的收敛性和多样性上取得显著效果.
中图分类号:
孙文静, 李军华, 黎明. 基于自适应支配准则的高维多目标进化算法[J]. 电子学报, 2020, 48(8): 1596-1604.
SUN Wen-jing, LI Jun-hua, LI Ming . Adaptive Dominance Criterion Based Evolutionary Algorithm for Many-objective Optimization[J]. Acta Electronica Sinica, 2020, 48(8): 1596-1604.
[1] Zhou A,Qu B Y,Li H,et al.Multiobjective evolutionary algorithms:A survey of the state of the art[J].Swarm and Evolutionary Computation,2011,1(1):32-49. [2] Bingdong,Li,Jinlong,et al.Many-objective evolutionary algorithms:A survey[J].ACM Computing Surveys(CSUR),2015,48(1):1-35. [3] Schutze O,Lara A,Coello C A C.On the influence of the number of objectives on the hardness of a multiobjective optimization problem[J].IEEE Transactions on Evolutionary Computation,2011,15(4):444-455. [4] 刘建昌,李飞,王洪海,等.进化高维多目标优化算法研究综述[J].控制与决策,2018,33(5):114-122. Liu J,Li F,Wang H,Li T,et al.Survey on evolutionary many-objective optimization algorithms[J].Control and Decision,2018,33(5):114-122.(in Chinese) [5] Julian Molina,Santana L V,Alfredo G.Hernandez-Diaz,et al.G-dominance:Reference point based dominance for multiobjective metaheuristics[J].European Journal of Operational Research,2009,197(2):685-692. [6] Sato H,Hernan E.Aguirre,Tanaka K.Self-controlling dominance area of solutions in evolutionary many-objective optimization[J].New Mathematics & Natural Computation,2015,11(2):135-150. [7] Yang S,Li M,Liu X,et al.Agrid-based evolutionary algorithm for many-objective optimization[J].IEEE Transactions on Evolutionary Computation,2013,17(5):721-736. [8] Elarbi M,Bechikh S,Gupta A,et al.Anew decomposition-based nsga-ii for many-objective optimization[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(7):1191-1210. [9] Tian Y,Cheng R,Zhang X,et al.A Strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization[J].IEEE Transactions on Evolutionary Computation,2019,23(2):331-345. [10] Li M,Yang S,Liu X.Shift-based density estimation for pareto-based algorithms in many-objective optimization[J].IEEE Transactions on Evolutionary Computation,2014,18(3):348-365. [11] Zhang X,Tian Y,Jin Y.Aknee point driven evolutionary algorithm for many-objective optimization[J].IEEE Transactions on Evolutionary Computation,2014,19(6):761-776. [12] Liu H L,Gu F,Zhang Q.Decomposition of amultiobjective optimization problem into a number of simple multiobjective subproblems[J].IEEE Transactions on Evolutionary Computation,2014,18(3):450-455. [13] Chen L,Liu H L,Lu C,et al.A novel evolutionary multi-objective algorithm based on S metric selection and M2M population decomposition[A].Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems[C].2015.2:441-452. [14] Zhou J,Yao X,Chan F,et al.A decomposition based evolutionary algorithm with direction vector adaption and selection enhancement[J].Information Sciences,2019,501:248-271. [15] Qi Y,Ma X,Liu F,et al.MOEA/D with adaptive weight adjustment[J].Evolutionary Computation,2014,22(2):231-264. [16] Yang Y,Luo J,Huang L,et al.A many-objective evolutionary algorithm with epsilon-indicator direction vector[J].Applied Soft Computing,2018,76:326-355. [17] Cai X,Sun H,Fan Z.A diversity indicator based on reference vectors for many-objective optimization[J].Information Sciences,2017,430:467-486. [18] Coello C A C,Lamont G B,Veldhuizen D A V.Evolutionary algorithms for solving multi-objective problems[J].2002.5-7. [19] Cheng R,Jin Y,Olhofer M,et al.Areference vector guided evolutionary algorithm for many-objective optimization[J].IEEE Transactions on Evolutionary Computation,2016,20(5):773-791. [20] Hui,Bai,Jinhua,et al.A Pareto-based many-objective evolutionary algorithm using space partitioning selection and angle-based truncation[J].Information Sciences,2019,478:186-207. [21] Deb K,Thiele L,Laumanns M,et al.Scalable Test Problems for Evolutionary Multiobjective Optimization. Evolutionary Multiobjective Optimization.Theoretical Advances and Applications[M].London:Springer-Verlag,2005.105-145. [22] Huband S,Hingston P,Barone L,et al.A review of multiobjective test problems and a scalable test problem toolkit[J].IEEE Transactions on Evolutionary Computation,2006,10(5):477-506. [23] Raquel Hernández Gómez,Coello C A C.Improved metaheuristic based on the R2 indicator for many-objective optimization[A].GECCO'15: Proceedings of the 2015 Genetic and Evolutionary Computation Conference[C].New York:ACM Press.2015.679-686. [24] Agrawal R B,Deb K,Agrawal R B.Simulatedbinary crossover for continuous search space[J].Complex Systems,2000,9(3):115-148. [25] Deb K,Goyal M.A combined genetic adaptive search(GeneAS)for engineering design[J].Computer Science and Informatics,1996,26:30-45. [26] Bader J,Zitzler E.HypE:An algorithm for fast hypervolume-based many-objective optimization[J].IEEE Transactions on Evolutionary Computation,2011,19(1):45-76. [27] Li M,Zhen L,Yao X.How to read many-objective solution sets in parallel coordinates[J].IEEE Computational Intelligence Magazine,2017,12(4):88-100. |
[1] | 曹付元, 杨淑晶, 王雲霞, 俞奎. 基于约束的局部-全局LWF链图结构学习算法[J]. 电子学报, 2023, (): 1-11. |
[2] | 裴洪, 司小胜, 胡昌华, 郑建飞, 张建勋, 董青. 零寿命标签下退化设备剩余寿命预测方法[J]. 电子学报, 2023, (): 1-10. |
[3] | 吴翼腾, 刘伟, 于溆乔. 基于参数差异假设的图卷积网络对抗性攻击[J]. 电子学报, 2023, 51(2): 330-341. |
[4] | 许新征, 李杉. 基于特征膨胀卷积模块的轻量化技术研究[J]. 电子学报, 2023, 51(2): 355-364. |
[5] | 陈阳, 皮德常, 代成龙, 李本田, 王碧, 薛乔. 多无人机协同陆地设施辅助移动边缘计算的系统能耗最小化方法[J]. 电子学报, 2023, (): 1-9. |
[6] | 张重生, 王斌. 基于序列相似性计算的甲骨残片缀合算法[J]. 电子学报, 2023, (): 1-10. |
[7] | 郭晓轩, 冯其波, 冀振燕, 郑发家, 杨燕燕. 多线激光光条图像缺陷分割模型研究[J]. 电子学报, 2023, 51(1): 172-179. |
[8] | 闫梦宇, 李金海, 刘文奇, 张文修. 带对象结构信息形式背景的概念知识发现与演化[J]. 电子学报, 2023, 51(1): 11-17. |
[9] | 徐佳伟, 罗倩. 基于遗传非参数MDL-BW方法的HMM结构优化[J]. 电子学报, 2022, 50(11): 2765-2772. |
[10] | 智慧来, 张丽, 李金海. 旁观者视角下粒的多层次描述[J]. 电子学报, 2022, 50(11): 2568-2574. |
[11] | 赵嘉, 王刚, 吕莉, 樊棠怀. 面向流形数据的测地距离与余弦互逆近邻密度峰值聚类算法[J]. 电子学报, 2022, 50(11): 2730-2737. |
[12] | 刘浩阳, 林耀进, 刘景华, 吴镒潾, 毛煜, 李绍滋. 由粗到细的分层特征选择[J]. 电子学报, 2022, 50(11): 2778-2789. |
[13] | 汪成亮, 赵凯, 刘嘉敏. 智能环境下基于边缘设备规则推理的数据预部署研究[J]. 电子学报, 2022, 50(10): 2347-2360. |
[14] | 高雷阜, 张梦瑶, 赵世杰. 融合簇边界移动与自适应合成的混合采样算法[J]. 电子学报, 2022, 50(10): 2517-2529. |
[15] | 李青青, 马慧芳, 李举, 李志欣, 姜彦斌. 属性网络中结合用户偏好的社区搜索和离群点检测[J]. 电子学报, 2022, 50(9): 2172-2180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||