[1] Ren L,Xu Z Y,Yan X Q.Single-sensor incipient fault detection[J].IEEE Sensors Journal,2011,11(9):2102-210.
[2] Yan R,Gao R X,Chen X.Wavelets for fault diagnosis of rotary machines:a review with applications[J].Signal Processing,2014,96(5):1-15.
[3] Wong P K,Yang Z,Chi M V,et al.Real-time fault diagnosis for gas turbine generator systems using extreme learning machine[J].Neurocomputing,2014,128(5):249-257.
[4] 周东华,李钢,李元.数据驱动的工业过程故障诊断技术[M].科学出版社,2011:23-27,58-59.
[5] 文成林,胡静,王天真,陈志国.相对主元分析及其在数据压缩和故障诊断中的应用研究[J].自动化学报,2008(09):1128-1139. WEN Cheng-Lin,HU Jing,Wang TIAN-Zhen,CHEN Zhi-Guo.Relative PCA with applications of data compression and fault diagnosis[J].Acta Automatica Sinica,2008,34(9):1128-1139.(in Chinese)
[6] 王天真,刘远,汤天浩,陈炎.基于相对主元分析的动态数据窗口故障检测方法[J].电工技术学报,2013,28(1):142-148. WANG Tian-zhen,LIU Yu-an,TANG Tian-ha,CHEN Yan.Dynamic data window fault detection method based on relative principal component analysis[J].Transactions of China Electrotechnical Society,2013,28(1):142-148.(in Chinese)
[7] 周福娜,文成林,陈志国,冷元宝.基于指定元分析的多级相对微小故障诊断方法[J].电子学报,2010,38(8):1874-1879. WANG Tian-zhen,LIU Yuan,TANG Tian-hao,CHEN Yan.Dynamic data window fault detection method based on relative principal component analysis[J].Acta Electronica Sinica,2010,38(8):1874-1879.(in Chinese)
[8] Harmouche J,Delpha C,Diallo D.Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis:Part I[J].Signal Processing,2014,94:278-28.
[9] Harmouche J,Delpha C,Diallo D.Incipient fault detection and diagnosis based on Kullback-Leibler divergence using principal component analysis:Part II[J].Signal Processing,2015,109:334-344
[10] 文成林,吕菲亚,包哲静,等.基于数据驱动的微小故障诊断方法综述[J].自动化学报,2016,42(9):1285-1299. WEN Cheng-Lin,LÜ Fei-Ya,BAO Zhe-Jing,LIU Mei-Qin.Areview of data driven-based incipient fault diagnosis[J].Acta Automatica Sinica,2016,42(9):1285-1299.(in Chinese)
[11] Wise B M,Gallagher N B.The process chemometrics approach to process monitoring and fault detection[J].Journal of Process Control,1996,6(6):329-348.
[12] Lv F,Wen C,Bao Z,et al.Fault diagnosis based on deep learning[A].American Control Conference(ACC)[C].Boston,MA,USA,IEEE,2016.6851-6856.
[13] Tamilselvan P,Wang P.Failure diagnosis using deep belief learning based health state classication[J].Reliability Engineering & System Safety,2013,115:124-135.
[14] Chang C H.Deep and shallow architecture of multilayer neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(10):2477-2486.
[15] Lu S,Liu H,Li C.Manifold Regularized stacked autoencoder for feature learning[A].The 2015 IEEE International Conference on Systems,Man,and Cybernetics[C].IEEE,2015.2950-2955.
[16] Lv F,Wen C,Liu M,Bao Z.Weighted time series fault diagnosis based on a stacked sparse autoencoder[J].Journal of Chemometrics,2017,31(4):e2912.
[17] R Raina,A Battle,H Lee,et al.Self-taught learning:transfer learning from unlabeled data[A].The 24th Int Conf on Machine Learning[C].New York:ACM Press,200.759-766.
[18] Baldi P,Hornik K.Neural networks and principal component analysis:Learning from examples without local minima[J].Neural Networks,1989,2(1):53-58.
[19] Japkowicz N,Hanson S J,Gluck M A.Nonlinear autoassociation is not equivalent to PCA[J].Neural Computation,2000,12(3):531-545.
[20] 胡静.基于多元统计分析的故障诊断与质量监测研究[D].浙江大学,2015. |