[1] Cremonesi P,Modica P,Pagano R,et al.Personalized and context-aware TV program recommendations based on implicit feedback[A].Proceedings of 16th International Conference on Electronic Commerce and Web Technologies[C].Valencia,Spain:Springer,2015.57-68.
[2] Wang Z,He L.User identification for enhancing IP-TV recommendation[J].Knowledge-Based Systems,2016,98:68-75.
[3] Turrin R,Condorelli A,Cremonesi P,et al.Time-based TV programs prediction[A].First Workshop on Recommender Systems for Television and Online Video at ACM RecSys'14[C].Silicon Valley,California,USA:ACM,2014.
[4] Oh J,Kim S,Kim J,et al.When to recommend:A new issue on TV show recommendation[J].Information Sciences,2014,280:261-274.
[5] Jin Y,Junhua G,Suqi Z,et al.Spark-based distributed multi-features hybrid IPTV viewing implicit feedback scoring model[J].Procedia Computer Science,2017,111:441-447.
[6] Cho K J,Lee Y C,Han K,et al.No,that's not my feedback:TV show recommendation using watchable interval[A].Proceedings of IEEE 35th International Conference on Data Engineering[C].Macau,China:IEEE,2019.316-327.
[7] Park Y,Oh J,Yu H.Rectime:Real-time recommender system for online broadcasting[J].Information Sciences,2017,409:1-16.
[8] Chang N,Irvan M,Terano T.A TV program recommender framework[J].Procedia Computer Science,2013,22:561-570.
[9] Bambini R,Cremonesi P,Turrin R.Recommender Systems Handbook[M].Berlin:Springer,2011.
[10] Karatzoglou A,Amatriain X,Baltrunas L,et al.Multiverse recommendation:n-dimensional tensor factorization for context-aware collaborative filtering[A].Proceedings of the 4th ACM Conference on Recommender Systems[C].Barcelona,Spain:ACM,2010.79-86.
[11] Yu C,Ding H,Cao H,et al.Follow me:personalized IPTV channel switching guide[A].Proceedings of the 8th ACM on Multimedia Systems Conference[C].Taipei,Taiwan,China:ACM,2017.147-157.
[12] Hu Y,Koren Y,Volinsky C.Collaborative filtering for implicit feedback datasets[A].Proceedings of the 8th IEEE International Conference on Data Mining[C].Pisa,Italy:IEEE,2008.263-272.
[13] Xin Y,Steck H.Multi-value probabilistic matrix factorization for IP-TV recommendations[A].Proceedings of the 5th ACM Conference on Recommender Systems[C].Chicago,Illinois,USA:ACM,2011.221-228.
[14] Zhang Z K,Liu C,Zhang Y C,et al.Solving the cold-start problem in recommender systems with social tags[J].Europhysics Letters,2010,92(2):28002-28007.
[15] Zhang R,Deng Y,Shi L.User research and design for live TV UX in China[A].Proceedings of Adjunct Publication of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video[C].New York,NY,USA:ACM,2017.9-14. |