[1] 郑近德,潘海洋,戚晓利,等.基于改进经验小波变换的时频分析方法及其在滚动轴承故障诊断中的应用[J].电子学报,2018,46(2):358-364. Zheng J,Pan H,Qi X,et al.Enhanced empirical wavelet transform based time-frequency analysis and its application to rolling bearing fault diagnosis[J].Acta Electronica Sinica,2018,46(2):358-364.(in Chinese)
[2] 张丹威,王晓东,黄国勇.相关系数SVD增强随机共振的单向阀故障诊断[J].电子学报,2018,46(11):2696-2704. Zhang D,Wang X,Huang G.Check valve fault diagnosis with correlation coefficient SVD enhanced stochastic resonance[J].Acta Electronica Sinica,2018,46(11):2696-2704.(in Chinese)
[3] Li W,Peng M,Wang Q.Fault detectability analysis in PCA method during condition monitoring of sensors in a nuclear power plant[J].Annals of Nuclear Energy,2018,119(9):342-351.
[4] Ait-Izem T,Harkat M F,Djeghaba M,et al.On the application of interval PCA to process monitoring:A robust strategy for sensor FDI with new efficient control statistics[J].Journal of Process Control,2018,63(1):29-46.
[5] Zou H,Hastie T,Tibshirani R.Sparse principal component analysis[J].Journal of Computational & Graphical Statistics,2006,15(2):265-286.
[6] Sch Lkopf B,Smola A,M LLER K-R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.
[7] Lee J M,Yoo C K,Lee I B.Statistical process monitoring with independent component analysis[J].Journal of Process Control,2004,14(5):467-485.
[8] Qui Ones-Grueiro M,Prieto-Moreno A,Verde C,et al.Data-driven monitoring of multimode continuous processes:A review[J].Chemometrics and Intelligent Laboratory Systems,2019,189(1):56-71.
[9] WANG B,LI H X.A sliding window based dynamic spatiotemporal modeling for distributed parameter systems with time-dependent boundary conditions[J].IEEE Transactions on Industrial Informatics,2019,15(4):2044-2053.
[10] Liu X,Kruger,Uwe,et al.Moving window kernel PCA for adaptive monitoring of nonlinear processes[J].Chemometrics & Intelligent Laboratory Systems,2009,96(2):132-143.
[11] Wang Y,Sun K,Yuan X,et al.A novel sliding window PCA-IPF based steady-state detection framework and its industrial application[J].IEEE Access,2018,6(99):20995-21004.
[12] Gajjar S,Kulahci M,Palazoglu A.Real-time fault detection and diagnosis using sparse principal component analysis[J].Journal of Process Control,2018,67(7):112-128.
[13] Kano M,Hasebe S,Hashimoto L,et al.Statistical process monitoring based on dissimilarity of process data[J].Aiche Journal,2002,48(6):1231-1240.
[14] ILI? M,TURNER I W,SIMPSON D P.A restarted Lanczos approximation to functions of a symmetric matrix[J].IMA Journal of Numerical Analysis,2010,30(4):1044-1061.
[15] Hastie T,Mazumder R,Zadeh R,et al.Matrix completion and low-rank SVD via fast alternating least squares[J].Journal of Machine Learning Research,2015,16(1):3367-3402.
[16] WEI S,LING Q,YUAN K,et al.On the linear convergence of the ADMM in decentralized consensus optimization[J].IEEE Transactions on Signal Processing,2014,62(7):1750-1761.
[17] Hajihosseini P,Anzehaee M M,Behnam B.Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques[J].ISA Transactions,2018,79(8):137-146. |