[1] He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2016.770-778.
[2] Yang X,Molchanov P,Kautz J.Multilayer and multimodal fusion of deep neural networks for video classification[A].Proceedings of the 24th ACM International Conference on Multimedia[C].SA:ACM,2016.978-987.
[3] 田艳玲,张维桐,张锲石,等.图像场景分类技术综述[J].电子学报,2019,47(4):915-926. TIAN Yan-ling,ZHANG Wei-tong,ZHANG Qie-shi,et al.Review on image scene classification technology[J].Acta Electronica Sinica,2019,47(4):915-926.(in Chinese)
[4] 余游,冯林,王格格,等.一种基于伪标签的半监督少样本学习模型[J].电子学报,2019,47(11):2284-2291. YU You,FENG Lin,WANG Ge-ge,et al.A few-shot learning model based on semi-supervised with pseudo label[J].Acta Electronica Sinica,2019,47(11):2284-2291.(in Chinese)
[5] Zhu X,Wu X.Class noise vs attribute noise:A quantitative study[J].Artificial Intelligence Review,2004,22(3):177-210.
[6] Xiao T,Xia T,Yang Y,et al.Learning from massive noisy labeled data for image classification[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2015.2691-2699.
[7] Frénay B,Verleysen M.Classification in the presence of label noise:a survey[J].IEEE Transactions on Neural Networks and Learning Systems,2013,25(5):845-869.
[8] Manwani N,Sastry P S.Noise tolerance under risk minimization[J].IEEE Transactions on Cybernetics,2013,43(3):1146-1151.
[9] Beigman E,Klebanov B B.Learning with annotation noise[A].Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP[C].Association for Computational Linguistics,2009.280-287.
[10] Teng C M.Evaluating noise correction[A].Pacific Rim International Conference on Artificial Intelligence[C].Berlin,Heidelberg:Springer,2000.188-198.
[11] Folleco A,Khoshgoftaar T M,Van Hulse J,et al.Software quality modeling:The impact of class noise on the random forest classifier[A].IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)[C].USA:IEEE,2008.3853-3859.
[12] Bartlett P L,Jordan M I,McAuliffe J D.Convexity,classification,and risk bounds[J].Journal of the American Statistical Association,2006,101(473):138-156.
[13] Misra I,Lawrence Zitnick C,Mitchell M,et al.Seeing through the human reporting bias:Visual classifiers from noisy human-centric labels[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2016.2930-2939.
[14] Zhu X J.Semi-supervised learning literature survey[R].University of Wisconsin-Madison Department of Computer Sciences,2005.
[15] Veit A,Alldrin N,Chechik G,et al.Learning from noisy large-scale datasets with minimal supervision[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2017.839-847.
[16] Chen X,Shrivastava A,Gupta A.Neil:Extracting visual knowledge from web data[A].Proceedings of the IEEE International Conference on Computer Vision[C].USA:IEEE,2013.1409-1416.
[17] Fergus R,Weiss Y,Torralba A.Semi-supervised learning in gigantic image collections[A].Advances in Neural Information Processing Systems[C].Vancouver,BC,Canada,2009.522-530.
[18] Miranda A L B,Garcia L P F,Carvalho A C,et al.Use of classification algorithms in noise detection and elimination[A].International Conference on Hybrid Artificial Intelligence Systems[C].Berlin,Heidelberg:Springer,2009.417-424.
[19] Guan D,Yuan W,Lee Y K,et al.Identifying mislabeled training data with the aid of unlabeled data[J].Applied Intelligence,2011,35(3):345-358.
[20] Natarajan N,Dhillon I S,Ravikumar P K,et al.Learning with noisy labels[A].Advances in Neural Information Processing Systems[C].Nevada,2013.1196-1204.
[21] Sukhbaatar S,Bruna J,Paluri M,et al.Training convolutional networks with noisy labels[J].arXiv Preprint,2014,arXiv:1406.2080.
[22] Matic N,Guyon I,Bottou L,et al.Computer aided cleaning of large databases for character recognition[A].Proceedings of the 11th IAPR International Conference on Pattern Recognition (Vol.Ⅱ).Conference B:Pattern Recognition Methodology and Systems[C].USA:IEEE,1992.330-333.
[23] Wu P,Hoi S C H,Xia H,et al.Online multimodal deep similarity learning with application to image retrieval[A].Proceedings of the 21st ACM International Conference on Multimedia[C].USA:ACM,2013.153-162.
[24] Wu Z,Jiang Y G,Wang J,et al.Exploring inter-feature and inter-class relationships with deep neural networks for video classification[A].Proceedings of the 22nd ACM International Conference on Multimedia[C].USA:ACM,2014.167-176.
[25] Reed S,Lee H,Anguelov D,et al.Training deep neural networks on noisy labels with bootstrapping[J].arXiv Preprint,2014,arXiv:1412.6596.
[26] Wen Y,Zhang K,Li Z,et al.A discriminative feature learning approach for deep face recognition[A].European Conference on Computer Vision[C].Cham:Springer,2016.499-515.
[27] Schroff F,Kalenichenko D,Philbin J.Facenet:A unified embedding for face recognition and clustering[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2015.815-823.
[28] Krizhevsky A,Hinton G.Learning multiple layers of features from tiny images[A].Computer Science[C].MIT,2009.1-14.
[29] LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[30] Lampert C H,Nickisch H,Harmeling S.Attribute-based classification for zero-shot visual object categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,36(3):453-465.
[31] Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[A].Advances in Neural Information Processing Systems[C].USA,2012.1097-1105.
[32] LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[33] Huang G,Liu Z,Van Der Maaten L,et al.Densely connected convolutional networks[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].USA:IEEE,2017.4700-4708.
[34] You Q,Luo J,Jin H,et al.Building a large scale dataset for image emotion recognition:The fine print and the benchmark[A].Thirtieth AAAI Conference on Artificial Intelligence[C].USA:AAAI,2016.1-7.
[35] Machajdik J,Hanbury A.Affective image classification using features inspired by psychology and art theory[A].Proceedings of the 18th ACM International Conference on Multimedia[C].USA:ACM,2010.83-92.
[36] Rao T,Xu M,Liu H,et al.Multi-scale blocks based image emotion classification using multiple instance learning[A].IEEE International Conference on Image Processing (ICIP)[C].USA:IEEE,2016.634-638.
[37] Yang J,She D,Lai Y K,et al.Retrieving and classifying affective images via deep metric learning[A].Thirty-Second AAAI Conference on Artificial Intelligence[C].USA:AAAI,2018.1-14. |