[1] Yazdi M,Bouwmans T.New trends on moving object detection in video images captured by a moving camera:A survey[J].Computer Science Review,2018,28:157-177.
[2] Joshi K A,Thakore D G.A survey on moving object detection and tracking in video surveillance system[J].International Journal of Soft Computing and Engineering,2012,2(3):44-48.
[3] Mabrouk A B,Zagrouba E.Abnormal behavior recognition for intelligent video surveillance systems:A review[J].Expert Systems with Applications,2018,91:480-491.
[4] Wang Q,Zhang L,et al.Fast online object tracking and segmentation:A unifying approach[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Long Beach,USA:ACM,2019.1328-1338.
[5] Zeng Z,Li Z,et al.Two-stream multirate recurrent neural network for video-based pedestrian reidentification[J].IEEE Transactions on Industrial Informatics,2017,14(7):3179-3186.
[6] Li L,Hu Q,et al.Moving object detection in video via hierarchical modeling and alternating optimization[J].IEEE Transactions on Image Processing,2018,28(4):2021-2036.
[7] Patil P W,Murala S.Msfgnet:A novel compact end-to-end deep network for moving object detection[J].IEEE Transactions on Intelligent Transportation Systems,2018,20(11):4066-4077.
[8] Lim L A,Keles H Y.Foreground segmentation using convolutional neural networks for multiscale feature encoding[J].Pattern Recognition Letters,2018,112:256-262.
[9] Wei Z,Li P,et al.A foreground-background segmentation algorithm for video sequences[A].Proceedings of the International Symposium on Distributed Computing and Applications for Business,Engineering and Science[C].Washington DC,USA:ACM,2015.340-343.
[10] Xu Z,Zhang D,et al.Moving object detection based on improved three frame difference and background subtraction[A].Proceedings of the International Conference on Industrial Informatics-Computing Technology,Intelligent Technology,Industrial Information Integration[C].Wuhan,China:ACM,2017.79-82.
[11] Xiang C,Zhang L,et al.MS-CapsNet:A novel multi-scale capsule network[J].IEEE Signal Processing Letters,2018,25(12):1850-1854.
[12] Han C,Duan Y,et al.Dense convolutional networks for semantic segmentation[J].IEEE Access,2019,7:43369-43382.
[13] Ou X,Yan P,et al.Moving object detection method via ResNet-18 with encoder-decoder structure in complex scenes[J].IEEE Access,2019,7:108152-108160.
[14] Lim K,Jang W D,et al.Background subtraction using encoder-decoder structured convolutional neural network[A].Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance[C].Lecce,Italy:ACM,2017.1-6.
[15] Dosovitskiy A,Fischer P,et al.Flownet:Learning optical flow with convolutional networks[A].Proceedings of the IEEE International Conference on Computer Vision[C].Washington DC,USA:ACM,2015.2758-2766.
[16] Chopra S,Hadsell R,et al.Learning a similarity metric discriminatively,with application to face verification[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C].San Diego,USA:ACM,2005.539-546.
[17] Simonyan K,Zisserman A.Very Deep Convolutional Networks for Large-scale Image Recognition[DB/OL].arXiv preprint arXiv:1409.1556,2014.
[18] He K,Zhang X,et al.Deep residual learning for image recognition[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Las Vegas,USA:ACM,2016.770-778.
[19] Huang G,Liu Z,et al.Densely connected convolutional networks[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Honolulu,USA:ACM,2017.4700-4708.
[20] Long J,Shelhamer E,et al.Fully convolutional networks for semantic segmentation[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Boston,USA:ACM,2015.3431-3440.
[21] Ioffe S,Szegedy C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[DB/OL].arXiv preprint arXiv:1502.03167,2015.
[22] Nair V,Hinton G E.Rectified linear units improve restricted boltzmann machines[A].Proceedings of the International Conference on Machine Learning[C].Washington DC,USA:ACM,2010.807-814.
[23] Li L,Huang W,et al.Statistical modeling of complex backgrounds for foreground object detection[J].IEEE Transactions on Image Processing,2004,13(11):1459-1472.
[24] Wang Y,Jodoin P M,et al.CDnet 2014:An expanded change detection benchmark dataset[A].Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C].Columbus,USA:ACM,2014.387-394.
[25] Maddalena L,Petrosino A.The 3dSOBS+ algorithm for moving object detection[J].Computer Vision and Image Understanding,2014,122:65-73.
[26] Liu X,Zhao G,et al.Background subtraction based on low-rank and structured sparse decomposition[J].IEEE Transactions on Image Processing,2015,24(8):2502-2514.
[27] Yong H,Meng D,et al.Robust online matrix factorization for dynamic background subtraction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(7):1726-1740.
[28] Wang K,Gou C,et al.M4CD:A robust change detection method for intelligent visual surveillance[J].IEEE Access,2018,6:15505-15520.
[29] Bianco S,Ciocca G,et al.Combination of video change detection algorithms by genetic programming[J].IEEE Transactions on Evolutionary Computation,2017,21(6):914-928.
[30] Isik S,Özkan K,et al.SWCD:a sliding window and self-regulated learning-based background updating method for change detection in videos[J].Journal of Electronic Imaging,2018,27(2):023002.
[31] Lee S,Lee G,et al.Wisenetmd:Motion detection using dynamic background region analysis[J].Symmetry,2019,11(5):621.
[32] Babaee M,Dinh D T,et al.A deep convolutional neural network for video sequence background subtraction[J].Pattern Recognition,2018,76:635-649.
[33] Tezcan O,Ishwar P,et al.BSUV-Net:a fully-convolutional neural network for background subtraction of unseen videos[A].IEEE Winter Conference on Applications of Computer Vision[C].Snowmass,USA:ACM,2020.2774-2783. |