[1] World Health Organization.Epilepsy[EB/OL].http://www.who.int/news-room/fact-sheets/detail/Epilepsy.2018-08-02.
[2] Verhellen E,Boon P.EEG source localization of the epileptogenic focus in patients with refractory temporal lobe epilepsy,dipole modelling revisited[J].Acta Neurologica Belgica,2007,107(3):71-77.
[3] 张瑞,宋江玲,胡文凤.癫痫脑电的特征提取方法综述[J].西北大学学报(自然科学版),2016,46(06):781-788. ZHANG Rui,SONG Jiang-ling,HU Wei-fang.A review of feature extraction methods for epileptic EEG[J].Journal of Northwest University (Natural Science Edition),2016,46(06):781-788.(in Chinese)
[4] Kiymi M,Guler Inan,Dizibuyuk,et al.Comparis-on of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for realtime application[J].Computers in Biology and Medicine,2005,35(7):603-616.
[5] Rajeev S,Ram P,Acharya U.An integrated index for the identification of focal electroencephalogrm signals using discrete wavelet transform and entropy measures[J].Entropy,2015,17(12):5218-5240.
[6] Sharma R,Pachori R,Acharya U.Application of entropy measures on intrinsic mode functions for the automated identification of focal electeoencep-halogram signals[J].Entropy,2015,17(2):669-691.
[7] Das A,Bhuiyan M.Discrimination and classification of focal and nonfocal EEG signals using entropy based features in the EMD-DWT domain[J].Biomedical Signal Processing and Control,2016,29:11-21.
[8] Dragomiretskiy K,Zosso P.Variational mode decomposition[J].IEEE Trans Signal Process,2014,62(3):531-544.
[9] Alam S,Bhuiyan M.Detection of seizure and epilepsy using higher order statistics in the EMD doain[J].IEEE Journal of Biomedical and Health Informatics,2013,17(2):312-318.
[10] Das A,Bhuiyan M.Classification of EEG signal using normal inverse Gaussian parameters in the dualtree complex wavelet transform domain for seizure detection[J].Signal,Image and Video Processing,2016,10(2):259-266
[11] Abhijit B,Ram P.Tunable-Q wavelet transform based multivariate sub-band fuzz entropy with application to focal EEG signal analysis[J].Entropy,2017,19(3):1-14.
[12] 高军峰,司慧芳,余彬.基于脑电样本熵的测谎分析[J].电子学报,2017,45(08):1836-1841. GAO Jun-feng,SI Hui-fang,YU Bin.Lie detection analysis based on the sample entropy of EEG[J].Acta Electronica Sinica,2017,45(08):1836-1841.(in Chinese)
[13] 席旭刚,左静,罗志增.肌电模糊熵特征的加权核FDA跌倒识别[J].电子学报,2016,44(06):1376-1382. XI Xu-gang,ZUO Jing,LUO Zhi-zeng.Weighted kernel FDA fall recognition of EMG fuzzy entropy[J].Acta Electronica Sinica,2016,44(06):1376-1382.(in Chinese)
[14] Azami H,Rostaghi M,Abasolo D,et al.Refined composite multiscale dispersion entropy and its application to biomedical signals[J].IEEE Trasactions on Biomedical Engineering,2017,64(12):2872-2879.
[15] Azami H,Fernandez A,Escudero J.Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis[J].Medical & Bioogical Engineering & Computing,2016,55(11):2037-2052.
[16] Andrzejak R G,Schindler K,Rummel C.Nonrandomness,nonlinear dependence,and nonstationarity of electroencephalographic recordings from epilepsy patients[J].Physical Review E,2012,86(4):046206.
[17] Taran S,Bajaj V.Clustering variational mode decomposition for identification of focal EEG Signals[J].IEEE Sensors Letters,2018,2(4):1-4.
[18] Chatterjee S,Pratiher S,Bose R.Multifractal detrended fluctuation analysis based novel feature extraction technique for automated detection of focal and non-focal EEG signals[J].IET Science Measurement & Technology,2017,11(8):1014-1021.
[19] Bhattacharyya A,Sharma M,Pachori R,et al.A novel approach for automated detection of focal EEG signals using empirical wavelet transform[J].Neural Computing and Applications,2018,29(8):47-57. |