电子学报 ›› 2002, Vol. 30 ›› Issue (5): 745-748.
李 蓉, 叶世伟, 史忠植
LI Rong, YE Shi-wei, SHI Zhong-zhi
摘要: 本文提出了一种将支持向量机分类和最近邻分类相结合的方法,形成了一种新的分类器.首先对支持向量机进行分析可以看出它作为分类器实际相当于每类只选一个代表点的最近邻分类器,同时在对支持向量机分类时出错样本点的分布进行研究的基础上,在分类阶段计算待识别样本和最优分类超平面的距离,如果距离差大于给定阈值直接应用支持向量机分类,否则代入以每类的所有的支持向量作为代表点的K近邻分类.数值实验证明了使用支持向量机结合最近邻分类的分类器分类比单独使用支持向量机分类具有更高的分类准确率,同时可以较好地解决应用支持向量机分类时核函数参数的选择问题.
中图分类号: