万柏坤;朱 欣;杨春梅;高 扬
电子学报. 2003, 31(10): 1571-1574.
眼动伪差和工频干扰是临床脑电图(EEG)中常见噪声,严重影响其有用信息提取.本文尝试采用独立分量分析(Independent Component Analysis,ICA)方法分离EEG中此类噪声.通过对早老性痴呆症(Alzheimer disease,AD)患者临床EEG信号(含眼动伪差和混入工频干扰,信噪比仅0dB)作ICA分析,比较了最大熵(Infomax)和扩展最大熵(Extended Infomax)ICA算法的分离效果,证实虽然最大熵算法可以分离出眼动慢波,但难以消除工频干扰,为此需采用扩展的最大熵算法;并知ICA方法在极低信噪比时也有较好的抗干扰性,且在处理非平稳信号时有好的鲁棒性;文中还结合近似熵(approximate entropy,ApEn)分析说明利用ICA去除干扰后有助于恢复和保持原始EEG信号的非线性特征.研究结果表明ICA方法在生物医学信号处理中具有潜在的重要应用价值,值得深入研究和推广.